
Scaling Up secure Processing, Anonymization and
generation of Health Data for EU cross border

collaborative research and Innovation

D4.2 — Architecture Specification Analysis and
Design

Grant Agreement Nr. 10109571

Ref. Ares(2024)5631017 - 04/08/2024

D4.2 - Architecture Specification Analysis and Design

Project Information

Project Title Scaling Up Secure Processing, Anonymization and Generation of Health Data for EU
Cross Border Collaborative Research and Innovation

Project Acronym SECURED Project No. 10109571
Start Date 01 January 2023 Project Duration 36 months
Project Website https://secured-project.eu/

Project Partners

Num. Partner Name Short Name Country
1 (C) Universiteit van Amsterdam UvA NL
2 Erasmus Universitair Medisch Centrum Rotterdam EMC NL
3 Budapesti Muszaki Es Gazdasagtudomanyi Egyetem BME HU
4 ATOS Spain SA ATOS ES
5 NXP Semiconductors Belgium NV NXP BE
6 THALES SIX GTS France SAS THALES FR
7 Barcelona Supercomputing Center Centro Nacional De Supercomputa-

cion
BSC CNS ES

8 Fundacion Para La Investigacion Biomedica Hospital Infantil Universitario
Nino Jesus

HNJ ES

9 Katholieke Universiteit Leuven KUL BE
10 Erevnitiko Panepistimiako Institouto Systimaton Epikoinonion Kai

Ypolgiston-emp
ICCS EL

11 Athina-Erevnitiko Kentro Kainotomias Stis Technologies Tis Pliroforias,
Ton Epikoinonion Kai Tis Gnosis

ISI EL

12 University College Cork - National University of Ireland, Cork UCC IE
13 Università Degli Studi di Sassari UNISS IT
14 Semmelweis Egyetem SEM HU
15 Fundacio Institut De Recerca Contra La Leucemia Josep Carreras JCLRI ES
16 Catalink Limited CTL CY
17 Circular Economy Foundation CEF BE

Project Coordinator: Francesco Regazzoni - University of Amsterdam - Amsterdam, The Netherlands

2

D4.2 - Architecture Specification Analysis and Design

Copyright

© Copyright by the SECURED consortium, 2024.

This document may contains material that is copyright of SECURED consortium members and the European
Commission, and may not be reproduced or copied without permission. All SECURED consortium partners
have agreed to the full publication of this document.

The technology disclosed herein may be protected by one or more patents, copyrights, trademarks and/or
trade secrets owned by or licensed to SECURED partners. The partners reserve all rights with respect to such
technology and related materials. The commercial use of any information contained in this document may re-
quire a license from the proprietor of that information. Any use of the protected technology and related material
beyond the terms of the License without the prior written consent of SECURED is prohibited.

Disclaimer

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and
do not necessarily reflect those of the European Union or the Health and Digital Executive Agency. Neither the
European Union nor the granting authority can be held responsible for them.

Except as otherwise expressly provided, the information in this document is provided by SECURED mem-
bers "as is" without warranty of any kind, expressed, implied or statutory, including but not limited to any implied
warranties of merchantability, fitness for a particular purpose and no infringement of third party’s rights.

SECURED shall not be liable for any direct, indirect, incidental, special or consequential damages of any
kind or nature whatsoever (including, without limitation, any damages arising from loss of use or lost busi-
ness, revenue, profits, data or goodwill) arising in connection with any infringement claims by third parties or
the specification, whether in an action in contract, tort, strict liability, negligence, or any other theory, even if
advised of the possibility of such damages.

3

D4.2 - Architecture Specification Analysis and Design

Deliverable Information

Workpackage WP4
Workpakace Leader (CTL)
Deliverable No. D4.2
Deliverable Title Architecture Specification Analysis and Design
Lead Beneficiary ISI
Type of Deliverable Report
Dissemination Level Public
Due Date 30/06/2024

Document Information

Delivery Date 30/06/2024
No. pages 99
Version | Status 1.2 | Final
Deliverable Leader Apostolos Fournaris (ISI, Evangelos Haleplidis (ISI)
Internal Reviewer #1 Juan Carlos Pérez Baún (Atos)
Internal Reviewer #2 Alberto Gutierrez-Torre (BSC)

Quality Control

Approved by Internal Reviewer #1 30/07/2024
Approved by Internal Reviewer #2 30/07/2024
Approved by Workpackage Leader 31/07/2024
Approved by Quality Manager 31/07/2024
Approved by Project Coordinator 1/08/2024

4

D4.2 - Architecture Specification Analysis and Design

List of Authors

Name(s) Partner
Apostolos Fournaris, Evangelos Haleplidis ISI
Francesco Regazzoni, Marco Brohet, Kyrian Maat, Georgios Tasopoulos UvA
Alberto Gutierrez-Torre BSC
Juan Carlos Perez Baun, Miryam Villegas Jimenez, Dario Ruiz Lopez ATOS
Paolo Palmieri UCC
Gareth T. Davies NXP
Gergely Acs, Balazs Pejo BME
Peter Pollner SEM
Ioannis N. Tzortzis, Charalampos Zafeiropoulos, Nikolaos Bakalos, Dimitrios Kalogeras ICCS
Christos Avgerinos, Christina Michailidou, Eleni Palousi CTL
Dario Guidotti, Laura Pandolfo UNSS
Alice Heliou, Vincent Thouvenot TSG

The list of authors reflects the major contributors to the activity described in the document. The list of authors
does not imply any claim of ownership on the Intellectual Properties described in this document. The authors
and the publishers make no expressed or implied warranty of any kind and assume no responsibilities for errors
or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out
of the use of the information contained in this document.

Revision History

Date Ver. Author(s) Summary of main changes
01.05.2024 0.1 Apostolos Fournaris (ISI) Created the document and the initial version of its con-

tent
10.05.2024 0.2 Apostolos Fournaris (ISI) Updated document structure and included assignment
15.05.2024 0.3 Apostolos Fournaris, Evange-

los Haleplidis (ISI)
Reference Architecture figure and description provided

20.05.2024 0.4 All technical partners & ISI
team

Agreed and structured final component naming and fi-
nalised section 3 ToC

30.05.2024 0.5 All Technical partners First draft section 3 input provided
10.06.2024 0.6 Apostolos Fournaris & Evan-

gelos Haleplidis (ISI) (ISI)
user types and draft User Journey provided in Section
4

15.06.2024 0.7 All Technical Partners first draft on Section 5 inputs (Tables) provided
25.06.2023 0.8 Apostolos Fournaris (ISI) Revised Reference architecture provided
06.07.2024 0.81 All Technical partners 3rd draft version of document finalized based on Re-

vised reference architecrure
24.07.2024 0.9 Apostolos Fournaris (ISI),

Christis Avgerinos (CTL),
Vassilis Paliouras (ISI), Kon-
stantina Karagianni (ISI) &
Francesco Regazzoni (UvA)

Reviewed and updated Section 5 Tables and deliver-
able overall context

25.07.2024 1.0 All Technical Partners Final deliverable provided. REady for internal review.

5

D4.2 - Architecture Specification Analysis and Design

Date Ver. Author(s) Summary of main changes
28.07.2024 1.1 Juan Carlos Pérez Baún

(ATOS) & Alberto Gutierrez-
Torre (BSC)

Internal Review completed

30.07.2024 1.11 All Technical Partners Internal Comments addressed
1.08.2024 1.2 Apostolos Fournaris (ISI),

Christis Avgerinos (CTL) &
Francesco Regazzoni (UvA)

Reviewed and Finalized Deliverable

2.08.2024 1.2 Francesco Regazzoni (UvA) Deliverable submitted to EU

6

D4.2 - Architecture Specification Analysis and Design

Table of Contents
1 Executive Summary 11

1.1 Related Documents . 11

2 Introduction 12
2.1 Purpose and Scope of the Document . 12
2.2 Contribution to WP4 and Relation to Work Packages, Deliverables, and Activities 12
2.3 Structure of the Document . 13

3 SECURED Reference Architecture 14
3.1 Overall Architecture . 14
3.2 SECURED Front End . 15

3.2.1 SECURED Hub Dashboard . 15
3.2.2 User Authentication & Authorization . 20
3.2.3 Logging and Monitoring/Alerting Mechanisms . 22
3.2.4 Secret Management . 23
3.2.5 Management DB . 23

3.3 SECURED Back End . 24
3.3.1 Data Ingestion Mechanism . 24
3.3.2 SECURED Orchestrator . 24
3.3.3 SECURED communication module . 25
3.3.4 Formal Verification . 25

3.4 Knowledge Base . 27
3.4.1 SECURE Data Lake . 28
3.4.2 Container Registry . 28
3.4.3 Toolbox Repository . 29
3.4.4 SECURED Data Inventory . 29
3.4.5 Legal Documents Repository . 29
3.4.6 Privacy Preserving AI-trained models . 30
3.4.7 Synthetic Data Cache . 30
3.4.8 UML - Sequence diagrams . 30

3.5 Innohub Services . 33
3.5.1 Platform Services . 33
3.5.2 Privacy Preserving Services and Innohub Tools . 35
3.5.3 Innohub Development Libraries . 52

4 SECURED Processes and User Interactions 55
4.1 User, Roles and Interactions Methodology . 55
4.2 User Types . 56

4.2.1 End User . 57
4.2.2 Model Developers . 57
4.2.3 Privacy Preserving Application Developers . 57
4.2.4 Data Developer . 57

4.3 User Journeys . 57
4.3.1 Common Processes-Stages . 58
4.3.2 End User UJ . 62
4.3.3 Model Developer UJ . 63
4.3.4 Privacy Preserving Application Developers . 66
4.3.5 Data Developer . 68

5 Technical Specifications and Interconnections of SECURED Architecture Components 69
5.1 Technical Specifications . 70

5.1.1 SECURED Front End . 70
7

D4.2 - Architecture Specification Analysis and Design

5.1.2 SECURED Back End . 71
5.1.3 Knowledge Base . 72
5.1.4 Innohub Services/Tools . 72
5.1.5 Innohub Development Libraries . 78

5.2 Interconnections and Interfaces . 80
5.2.1 SECURED Front End . 80
5.2.2 SECURED Back End . 80
5.2.3 Knowledge Base . 81
5.2.4 Innohub Services/Tools . 81
5.2.5 Innohub Development Libraries . 87

6 Conclusions 89

A Appendix: Overview of Identified Technical Requirements 90
A.1 Altered or Merged Technical Requirements . 90

A.1.1 Merging A . 90
A.1.2 Merging B . 91
A.1.3 Merging C . 92
A.1.4 Updated/Revised Requirement . 93
A.1.5 Out of Scope Requirements for the SECURED Architecture 93

A.2 Final D4.1/D4.2 Technical Requirements . 94

B Appendix: New Technical Requirements 98

8

D4.2 - Architecture Specification Analysis and Design

Acronyms

ADT Anonymized Data Transformation. 46, 49, 51, 54, 61, 62, 68

AES Advanced Encryption Standard. 23

AI Artificial Intelligence. 33, 39–43, 57, 86

API Application Programming Interface. 20, 22, 23, 29–31, 36, 37, 44–46, 58, 64, 73, 77, 80–84, 86–88, 96

CI/CD Continuous Integration and Continuous Deployment solution. 24, 25

CJ Customer Journey. 55

CRUD Create, Read, Update, Delete. 23

CTG Cardiotocography. 36

DB Data Base. 22, 23

DICOM Digital Imaging and Communications in Medicine. 24, 81, 82

DL Deep Learning. 63–67, 81

DoA Description of Action. 11, 12, 93

EDPB European Data Protection Board. 35

EHR Electronic Health Record. 44, 46, 81

EU European Union. 35, 63, 86

FL Federated Learning. 33, 52, 56, 57, 67, 78, 79, 87

GA Grant Agreement. 11, 27, 56

GDPR General Data Protection Regulation. 14, 33, 35, 60, 62, 63, 68

GPU Graphics Processing Unit. 73, 74, 79

HE Homomorphic Encryption. 52, 54, 56, 57, 67, 79, 97

HTTPS Hypertext Transfer Protocol Secure. 23, 74, 77

IAM Identity and Access Management. 20, 21

JSON JavaScript Object Notation. 21, 28–30, 34, 80

JWT JSON Web Token. 21, 23

ML Machine Learning. 14, 33, 57, 63–67, 81, 88

MRI Magnetic Resonance Imaging. 36, 37

OWL Web Ontology Language. 72

PET Privacy-Enhancing Technology. 15, 56, 57

RBAC Role-Based Access Control. 15, 20, 23

9

D4.2 - Architecture Specification Analysis and Design

ReST REpresentational State Transfer. 20, 45, 46, 77, 81, 83–86, 96

SDG Synthetic Data Generator. 36–38, 51, 58, 59, 61, 64, 73–75, 78, 86

SMPC Secure Multi-Party Computation. 52–54, 56, 57, 67, 79, 97

SQL Structured Query Language. 72

SSL Secure Sockets Layer. 70–76

SWRL Semantic Web Rule Language. 25

TLS Transport Layer Security. 78, 79

UI User Interface. 15, 36

UJ User Journey. 5, 7, 11, 13, 55–58, 62–69

UJM User Journey Mapping. 12, 13, 20, 55, 56

UX User Experience. 15

WP Work Package. 12

10

D4.2 - Architecture Specification Analysis and Design

1 Executive Summary

This document fulfills the goals of task T4.1 and outlines a detailed SECURED architecture, the interfaces
between its components and its communications network architecture and the main characteristics of compo-
nents’ interfaces to be used as input in WP2 and WP3 for the application library development as well as WP4
where the SECURED infrastructure is built and the integration takes place.

The SECURED architecture consists of all the necessary components concerning scaling-up secure multi-party
computation, privacy-preserving and robust federated learning, unbiased AI, private synthetic-data generation,
as well as data anonymisation and anonymisation assessment (de-anonymisation or re-identification), amongst
others, all of them will be interconnected through standard open interfaces.

The document delivers the following:

1. It details the SECURED architecture with all their components.

2. It identifies SECURED user types and maps their User Journey on the SECURED system

3. It documents all technical specifications per SECURED Architecture Component

4. It documents all Inputs, Outputs, Interfaces and Interactions per Component

5. It provides updates on SECURED Technical Requirements (in relation to the preliminary technical require-
ments of D4.1[1]) and documents new ones

1.1 Related Documents

• Grant Agreement (GA) Project 101095717 - SECURED; Description of Action (DoA) Annex 1

• Deliverable 4.1 "State of the Art and initial technical requirements"

11

D4.2 - Architecture Specification Analysis and Design

2 Introduction

2.1 Purpose and Scope of the Document

This document is extending the preliminary work on the SECURED Reference Architecture and technical re-
quirements that has been done in Deliverable 4.1. Thus, the Deliverable provides the final SECURED Refer-
ence Architecture that can accommodate the whole SECURED functionality as this has been described in the
project Description of Action (DoA). Within the document we aim to offer details on each one of the Reference
Architecture components and in some cases details on the internal structure of each component. We also
provide a graphical view of the Reference Architecture that showcases all the component interactions in an
abstract manner. By specifying the Reference Architecture and its building blocks, the SECURED consortium
aims to fully and comprehensively map the various SECURED functionalities as those where already abstractly
presented in the preliminary version of the deliverable (i.e., D4.1[1]). Thus, this Deliverable, D4.2, acts as a
reference point of the current and upcoming project activities related to the implementation of the SECURED
system including the SECURED Innohub and its capabilities.

In order to accomplish the aforementioned goals and also properly map all interactions of the SECURED Ref-
erence Architecture with its users, in this deliverable, we use the User Journey Mapping (UJM) approach in
order to a) identify the various user types and b) specify the way each user type interacts with the SECURED
system and what internal actions within this system are triggered due to these interactions. This information will
dictate the overall SECURED solution implementation and the integration process of the various components
into the realistic implementation SECURED solution that is going to be realized in the T4.4 of WP4 as well as
the SECURED prototype implementation that will be utilized for the SECURED Open Call.

Apart from the above, it is within the scope of this document to provide the SECURED integrator and technical
partners with as detailed as possible technical specifications for each one of the SECURED components, and
to technical determine the component-to-component interconnection specifications. In an effort to provide such
details, in this deliverable, we use the collected technical requirements from D4.1[1] and also introduce addi-
tional ones and assign them as requirements of each one of the SECURED components. This per-component
list of technical specifications is complemented by another important SECURED Reference Architecture char-
acteristic, the interaction from one component to the other. These types of specification provide a thorough
insight on the interfaces that each component have and the types of data such interfaces use to communicate
with other SECURED components. The above collection of described specifications provide detailed guidelines
for the next design iteration of the SECURED solution that will be focused on the implementation and prototype
development to be performed in the other tasks of WP4. It should be noted that the provided specifications
and interactions provide a clear picture of the current status of the SECURED solution development but as the
actual SECURED platform, Innohub, tools and services get integrated together they may be further refined and
updated.

2.2 Contribution to WP4 and Relation to Work Packages, Deliverables, and
Activities

The Deliverable constitutes the final outcome of T4.1 - State-of-the-Art, Technical Specifications & Architecture
Design of WP4 and provide the backbone of requirements and specifications of the SECURED architecture
for all WP activities of the project till M18. It also provides insight for the development and integration activ-
ities that are taking place or will take place in WPs 2, 3 and 4. The Deliverable extends the work presented
in D4.1[1]. It realizes the WP4 objectives of a) Providing State of the Art in scale-up SMPC, Anonymisation,
De-anonynimization and Synthetic data Generation and b) Providing SECURED architecture and technical
requirements as those exist in the DoA. The Deliverable also strategically contributes to the design and imple-
mentation of the overall SECURED Innohub objective in WP4. Apart from WP4, the deliverable also relates
to the WP2 and WP3 activities where the components described in it are been developed as well as the WP5
activities where the user requirements are specified, in Deliverable D5.1.

12

D4.2 - Architecture Specification Analysis and Design

2.3 Structure of the Document

The document consists of 5 sections and 2 appendices. Apart from the introduction Section (Section 2 there are
four technical section that document all aspects of the deliverable. In Section 3 the final SECURED Reference
Architecture is presented and its six different domains are described shortly. Furthermore, in this section we
provide an thorough description of each one of the components that appear in the six domains including figures,
when needed, detailing the components’ individual functionality and execution flow. In Section 4 we describe the
User Journey Mapping methodology that we have used in order to identify SECURED user types and describe
their interactions with the SECURED platform and the Innohub services and tools as well as the development
libraries that are developed in WP2 and WP3. Having identified the final SECURED components and through
the various UJ of Section 4 we manage to reevaluate the technical requirements of the deliverable D4.1[1]
where the preliminary SECURED Reference Architecture is presented and we are also able to provide detailed
technical specifications for each component and specifications on each component interactions and interfaces.
These specifications are described per component in Section 5. In Section 6 the conclusions of the Deliverable
are presented. Finally, the updated, revised technical requirements (originally presented in D4.1[1]) for the
SECURED architecture and its components are briefly documented in Appendix A of the deliverable while in
Appendix B we present new technical requirements that are identified by M18 of the project

13

D4.2 - Architecture Specification Analysis and Design

3 SECURED Reference Architecture

3.1 Overall Architecture

Figure 1 provides a schematic of the SECURED Reference Architecture. As shown, the architecture is split into
six domains, the Front End, the Back End, the Knowledge Base, the Innohub Services, the Innohub tools and
the Innohub Software/Hardware Development libraries.

Figure 1 – SECURED Architecture

The Front End domain provides all the necessary SECURED components and facilitates the necessary inter-
facing between the users and the rest of the SECURED system, containing features such as user authentication,
secret management and logging.

The Back End domain provides the core infrastructure of the whole solution, supporting various critical function-
alities such as connectivity of the architectural components, orchestration of the SECURED operations and the
overall SECURED functionality, data ingestion mechanisms from external data sources and a formal verification
mechanism for the whole SECURED solution.

The Knowledge Base domain acts as the central repository of knowledge for the SECURED framework. The
Knowledge Base contains the necessary data structures of the overall SECURED solution such as a container
registry, toolbox repository, codesource repository and Data Inventory as well as the SECURED Data Lake
which contains Synthetic Data, SECURED generated trained AI models, series of legal documents and in
general any data that may be used, generated or handled by SECURED.

The Innohub Services domain provides all the mandatory functionalities as services to support the project
objectives and is split into two subdomains. The first subdomain is the Platform Services which include all the
project-wise services of the SECURED Innohub, providing an ML model marketplace, an anonynimisation deci-
sion support mechanism and a Legal/GDPR compliance check service. The second subdomain contains all the
Privacy Preserving Services which include the synthetic data generation service, and the data transforma-
tion service of the SECURED Innohub that offers bias assessment and unbiasing through the bias assessment
service and the unbiasing engine service. The above services can also be offered as downloadable tools to
accommodate users that request offline usage of the SECURED Innohub capabilities.

The Innohub tools domain contains all the downloadable tools that are offered by the SECURED Innohub to
be run on the user’s premises. The provided tools include variations of the provided SECURED Innohub Ser-
vices like the bias assessment tool, unbiasing tool and the synthetic data generator tool but also the Innohub

14

D4.2 - Architecture Specification Analysis and Design

toolset for anonymisation, more specifically, the anonymisation tool, the annonymisation assessment tool and
the anonymised data transformation toolset. The later constitute an advanced toolset that allows the collabora-
tion of several of the provided tools, as described in Section 3.5.2.6, in order to provide to the users a "properly"
anonymised and as a standalone tool. By "properly" anonymised we refer to a dataset that has low or no bias,
that has been anonymised with techniques and methodologies that provide an anonymisation result that is not
susceptible to currently known de-anonymisation attacks.

Finally, the SECURED architecture features the Innohub Privacy-Providing Development Libraries domain
that includes a large number of development libraries that can be provided to the Innohub users to develop their
own Privacy-Enhancing Technologies (PETs) developed applications. The included development libraries can
be characterized as privacy preserving federated learning development libraries, secure multiparty computation
libraries, Homomorphic Encryption libraries and Anonymisation Software/Hardware Development libraries. The
development libraries integrate several scalability enhancement mechanisms that rely on algorithmic and/or
implementation enhancement using software or hardware means.

The rest of this section provides a detailed description of each of the components residing in each domain of
the SECURED Architecture.

3.2 SECURED Front End

The front-end of the SECURED Innohub is a user-friendly digital platform, which is designed to empower users
with the developed data privacy and security tools. This platform serves as a centralized gateway where users
can explore, download, and experiment with various tools that address contemporary challenges in data pro-
tection. Key features of the SECURED Innohub front-end include:

1. Role-Based Access Control (RBAC): To ensure secure access, the platform will utilize RBAC, which
authorizes users based on their assigned role. This approach restricts access to tools, functionalities
and/or datasets according to predefined roles (i.e., Administrator, User, Guest, etc.), thereby maintaining
a controlled environment.

2. Logging: Comprehensive logging mechanisms are integrated into the platform to record all user activities
and system events.

3. Monitoring and Alerting System: The platform includes a robust monitoring and alerting system that
continuously tracks system performance and security events.

Through these features, the SECURED Innohub platform not only facilitates user engagement with innovative
tools, but also ensures a secure, efficient, and reliable user experience. The following sections provide a
detailed description of the aforementioned features and a set of mockups which visualize how we envision the
platform.

3.2.1 SECURED Hub Dashboard

The main goal while developing the front-end of the SECURED Innohub is to follow all UI/UX principles in order
to create an intuitive and user-friendly interface. By focusing both on the functionality and the design of an easy
to navigate dashboard, we want to ensure that users can effortlessly engage with the tools and services without
sacrificing the user experience. Following, a set of mockup pages is provided which depict the overall look and
feel of the dashboard.

Login/ Registration Page

The Login page (Figure 2) is the entry point for users to access the SECURED Innohub. It features fields for
entering an email and password, along with options for users who have forgotten their password or need to
register for an account. The page emphasizes ease of access with a clear call to action to sign in. On the other
hand, the Registration page (Figure 3) allows new users to create an account. It collects basic information

15

D4.2 - Architecture Specification Analysis and Design

such as first name, last name, email, company/organization, and password. Users must agree to the terms and
conditions before registering.

Figure 2 – The SECURED Login Page.

Figure 3 – The SECURED Registration Page.

Home Page

The home page (Figures 4 and 5) provides a comprehensive overview of the SECURED Innohub and its of-
ferings. It includes navigation links to different sections such as Tools, Services, Knowledge Base, and the
SECURED Project. The page highlights key areas of research, available tools, and services with brief descrip-
tions and "Read more" links for additional information. Moreover users can find also useful tutorial videos on
how to use the platform.

16

D4.2 - Architecture Specification Analysis and Design

Figure 4 – The SECURED Home Page (1/2).

Figure 5 – The SECURED Home Page (2/2).

Tools/Services Pages

The Tools page (Figure 6) lists the various tools available within the SECURED Innohub. A similar page (Fig-
ure 7) is also provided for the services which are available within the Innohub. Each tool/service is briefly
described (Figure 8), and users can read more about it or proceed to use them.

17

D4.2 - Architecture Specification Analysis and Design

Figure 6 – The SECURED Tools Page.

Figure 7 – The SECURED Services Page.

Figure 8 – The Details Page.

18

D4.2 - Architecture Specification Analysis and Design

Pipeline Triggering

The pipeline page (Figure 9) allows users to experiment with the entire suite of SECURED tools. Users can
either upload their datasets or choose from existing ones to trigger the tool pipeline. This page provides a
seamless interface for conducting comprehensive data privacy and security experiments.

Figure 9 – The Pipeline Triggering Page.

Each page is designed to guide users through the process of exploring, understanding, and utilizing the tools
developed under the SECURED project, ensuring a seamless and efficient user experience.

19

D4.2 - Architecture Specification Analysis and Design

3.2.2 User Authentication & Authorization

The Identity and Access Management (IAM) is the component responsible for the user account management
lifecycle of the SECURED platform and for controlling the access to the different resources of the platform.
IAM undertakes the operations related to the registration, verification and authentication of all the users of the
platform. The main functionality of IAM is to provide the security engine that implements the authentication,
authorisation and role management functionalities of the SECURED platform. IAM follows the main principles
defined by the RBAC paradigm. An RBAC model defines an access control mechanism in which access rights
are granted to users based on their role within an ecosystem. In RBAC, permissions are assigned to specific
roles rather than to individual users. Users are following assigned roles, and through these roles, they acquire
the permissions to perform the relevant tasks. RBAC enables a structured and efficient way to handle access
control, especially in environments with many users and a large number of permissions. Roles can be designed
to reflect the organizational hierarchy and business functions, such as Administrator, Manager, User, and Guest.
By assigning users to roles and managing roles independently of the users, RBAC provides a scalable and
manageable approach to access control. To this end, the distinct roles which are currently available in the
SECURED platform are as follows:

• Admin

• Tool owner

• Service owner

• User

• Guest

It must be noted that these roles are associated to access rights on the SECURED Innohub and are considered
from a user access point of view instead of the User Types defined in Section 4.2 that depicts functional usage
of the platform by its users/UJM personas.

Basic Principles

The IAM is capable of controlling the access to the various data/tools/services of the SECURED platform based
on the role of requestor (user), as seen in Figure 10. The data are exposed to the end users in the form of
ReST APIs. Each endpoint exposed by the platform should be added in a list of endpoints, describing thus the
whole data platform functionalities. The access control mechanism is applied by assigning the roles that are
granted access per endpoint. For this purpose, the list of roles that can have access to each endpoint, should
be defined. It should be noted that multiple roles can be assigned to a single endpoint (N to 1 relationship).
Hence, IAM is maintaining the access control information in the following form:

Figure 10 – Access to endpoints based on given role.

20

D4.2 - Architecture Specification Analysis and Design

The core element of the authorisation, authentication and access approval, is a token-based mechanism, which
is based on JSON Web Token (JWT). JWT is an open standard (RFC 7519) ([2]) that defines a compact and
self-contained way for securely transmitting information between parties as a JSON object. JWT is considered
a dominant solution for authentication, authorisation and secure exchange of information. Upon successful
login, a valid token is generated, in which the access level is defined by incorporating the username and the
role that is assigned to this user within the token. Any subsequent request should contain this generated token.
The endpoint receiving a request should consult IAM with the requestor’s token for validation and access control
decision.

Basic Workflows

In order to access any resource of the platform (i.e., tools, services, datasets, etc.), users should have success-
fully logged in first (Figure 11), by providing their credentials to IAM which as mentioned previously undertakes
the task of the authentication. The first basic workflow which is provided by the SECURED platform follows a
streamlined, single sign-in process for authenticating users. This process includes the following steps.

1. Initiating the Login Request: Users submit their login credentials to the IAM system via the designated
login endpoint.

2. Credential Verification and Token Issuance: Upon successful verification of the provided credentials,
IAM issues an access token in JWT format and a refresh token. These tokens are included in the re-
sponse header. The IAM system will respond with a Status Code 200 OK for a successful login or 401
Unauthorized if the authentication fails.

3. Access Token Usage: The access token must be included in the header of every subsequent request to
access the platform’s resources.

Figure 11 – The Login Process.

The second workflow (Figure 12) is related to any subsequent request, after the successful login, to access any
available resource of the platform. This workflow consists of the following steps:

1. When the user initiates a request to access an endpoint, the endpoint should consult IAM, in order to
validate the request and make an access control decision.

2. The endpoint should initiate a call to the access verification endpoint of IAM, providing the token in the
Header of the request.

3. IAM will respond with either a Status Code 200 OK or a Status Code 403 Forbidden, if access is granted
or denied, respectively.

21

D4.2 - Architecture Specification Analysis and Design

Figure 12 – Resource Access.

This robust authentication mechanism ensures secure and efficient access to the platform, safeguarding data
integrity while providing a seamless user experience.

3.2.3 Logging and Monitoring/Alerting Mechanisms

The aim of implementing a centralized logging repository (Figure 13 is to collect, store, and manage in an
efficient way the logs coming from all the interactions that a user will have with the SECURED Innohub. More
specifically, this logging repository will include logs coming from the three main actors of the Innohub, which
are the Management DB, the API which will facilitate the communication among the Management DB and
the Front-end, and the Front-end itself. For the database, logs should include queries executed, changes to
data, authentication attempts, and access patterns to identify potential misuse or anomalies. The API should
log incoming requests, response times, error rates, and authentication attempts to track the performance and
detect unauthorized access or abuse. The dashboard should log user activities, changes in configurations, and
access attempts to monitor for suspicious behavior and ensure that only authorized users are making changes.
The following schema, depicted in Figure 13, illustrates the SECURED Innohub centralized logging system.

Figure 13 – The SECURED Centralized Logging System.

In essence, the several components that comprise the SECURED Innohub ecosystem will streamline their logs
to a centralized infrastructure where a three-stage process will take place. The first stage will be responsible for
aggregating logs from various sources and transforming them into a consistent format for easier processing and
analysis. The second step involves storing the transformed log data in a scalable and searchable repository
while the third and final step focuses on presenting the log data in a visual format that is easy to interpret
and analyze. Visualization tools offer dashboards and charts that help users monitor system performance and
identify issues in real-time. Moreover, alerts can be configured to notify administrators of critical events such as
failed login attempts, unusual spikes in API traffic, significant changes in database queries, and unauthorized
access attempts.

22

D4.2 - Architecture Specification Analysis and Design

3.2.4 Secret Management

Secret management is the practice of handling sensitive information—referred to as "secrets"—in a secure
manner throughout their lifecycle. Secrets can include passwords, API keys, tokens, encryption keys, and cer-
tificates that are essential for authenticating and securing communications between systems and applications.
Effective secret management involves storing secrets in encrypted formats, controlling and monitoring access to
these secrets, and ensuring they are regularly updated to mitigate the risk of unauthorized access. Encryption
ensures that even if secrets are intercepted, they cannot be read without the corresponding decryption keys.
Implementing RBAC ensures that only authorized users and systems can access specific secrets, thereby min-
imizing potential attack vectors. Regular audits and monitoring further enhance the security posture by tracking
access patterns and identifying anomalies. Within the SECURED Innohub our approach involves the following
security practices:

1. Password Storage: User passwords will be hashed using a hashing algorithm such as bcrypt. This
ensures that even if the database is accessed, the passwords are not stored in a reversible format and
are protected.

2. Management DB Encryption: To further protect content, an encryption mechanism (i.e., Advanced En-
cryption Standard (AES)) will be placed on top of password hashing, and possibly other sensitive data,
stored in the Management DB. This provides an additional layer of security, ensuring that all data, including
hashed passwords, remain encrypted at rest.

3. Regular Token Updates: As described in Section 3.2.2, the access to the SECURED Innohub is facil-
itated through the usage of JWT tokens. Those tokens will have a short period of life (i.e., 24 hours),
forcing thus the users to re-login to the Innohub.

4. Secure Communication: All data transmissions between the Innohub and the server are secured us-
ing HTTPS. This ensures that the data, including sensitive information like passwords and tokens, is
encrypted in transit and protected against eavesdropping and man-in-the-middle attacks.

3.2.5 Management DB

The Management DB serves as the backbone for the dashboard in our system, providing essential storage
and retrieval functionalities for various critical components. Primarily, it is designed to manage user informa-
tion, securely store secrets, and track user sessions. The database schema includes tables for user profiles,
authentication details, encrypted secrets, and session records. Each user profile contains necessary personal
and RBAC information, ensuring that permissions are appropriately managed and enforced. Encrypted se-
crets, such as passwords, API keys, and other sensitive data, are stored using strong encryption algorithms to
maintain their confidentiality and integrity. Session tracking includes storing tokens and session metadata to
monitor and manage active sessions, enhancing both security and user experience by allowing administrators
to detect and handle anomalies like multiple simultaneous logins or expired sessions. To facilitate seamless
communication between the Management DB and the dashboard, we employ FastAPI1 as the intermediary
API layer. FastAPI serves as the conduit through which the dashboard interacts with the database, provid-
ing a robust, high-performance framework that supports asynchronous operations and rapid response times.
Through well-defined API endpoints, FastAPI handles user authentication, authorization, and session man-
agement processes. For example, when a user logs in, FastAPI validates their credentials against the stored
hashes in the database, generates a session token upon successful authentication, and records the session
details. Additionally, the API layer manages Create, Read, Update, Delete (CRUD) operations for user pro-
files and secrets, ensuring that all interactions with the database are secure and efficient. This setup not only
guarantees the secure handling of sensitive data, but also promotes a scalable and maintainable architecture,
capable of accommodating future expansions and increased user demands.

1https://fastapi.tiangolo.com/

23

D4.2 - Architecture Specification Analysis and Design

3.3 SECURED Back End

The SECURED Back End architectural block encompasses all underlying methods, technologies and well-
known third-party software solutions, assembled as an efficient project integration core. The SECURED Back
End is responsible for handling data ingestion, acting as the middleman between raw data and the SECURED
Knowledge Base, bringing input information to a certain level of serialization and data health. The formal
verification of the SECURED components, a prime operation that ensures the continuous and unrestrained
compliance of the developed components to the specific SECURED guidelines, also happens in the project’s
Back End. Furthermore, the overall orchestration of sequential or parallel execution of on-demand services, as
well as the communication between them, originates from this block.

3.3.1 Data Ingestion Mechanism

The Data Ingestion Mechanism is a critical component within the SECURED Federation Infrastructure, ensuring
accurate and up-to-date data ingestion from an abundance of diverse external data sources to the Data Ware-
house and the Knowledge Base of the project. Additionally, the Data Ingestion module includes a variety of data
transformation functions so that imported data are standardized, matching the data scopes of the SECURED
Knowledge Base, and also, brought to a certain level of quality and homogenization. In order to guarantee the
smooth and efficient flow of data into the SECURED ecosystem, the Data Ingestion mechanism is equipped
with a plethora of data handling means. The module deals with non-structured data, such as DICOM images,
.jpeg files, and documents, i.e data types that do not follow a specific structure or schema, making their in-
gestion particularly challenging. To tackle this, advanced tools such as custom data loaders and crawlers will
be developed and integrated into the system. The module also manages semi-structured data, such as .csv,
.json and .xml files. Although these loosely typed data formats contain some organizational properties, they
do not conform to strict schemas. The data ingestion module must employ robust validators to accurately in-
terpret these semi-structured data, ensuring consistency and reliability during the ingestion process. Finally
and mostly expected, the module is capable of handling fully structured data such as large medical datasets,
which come with predefined schemas, strong structures and even custom data loaders. These datasets are
typically well-organized, allowing for straightforward mapping and integration into the data repositories. The
module must ensure that the integrity and relationships within these structured datasets are preserved during
the transfer. Instead of infusing raw data into the SECURED ecosystem, the Data Ingestion mechanism will ap-
ply transformation functions including but not limited to, cleaning, enriching and indexing of the input. Cleaning
of data ensures that irrelevant or duplicate data is removed, missing values are handled and some normaliza-
tion, such as transformation of all text to lowercase. Enrichment of data adds context to the imported data such
as timestamp, geo-tagging, source or anonymisation level. Finally, software solutions like Elasticsearch may
be considered for indexing text-heavy data and logging.

3.3.2 SECURED Orchestrator

The SECURED Orchestrator is the module responsible for developing and managing a robust Continuous
Integration and Continuous Deployment solution (CI/CD), thus enhancing the project’s overall development
lifecycle. The inherit multi-party nature of the SECURED project dictates for a robust, plug-and-play integration
of components which should maximize the capabilities of each tool or service in a highly efficient way. Ship-
ping code in Docker containers has been the industry standard for portable and lightweight software packaging
during the last decade. The dockerization of components is crucial because it ensures consistency across
different development, testing, and production environments. By packaging applications and their dependen-
cies into lightweight, portable docker containers, the SECURED integration scheme eliminates the "it works on
my machine" problem, enabling all developed tools and services to work in a stable, portable and lightweight
environment regardless of the responsible partner’s local setup. This software encapsulation eventually leads
to more reliable and reproducible builds and error tracing, simplifies the CI/CD pipeline, and accelerates the
deployment process. Additionally, the dockerization of components enables efficient and scalable integration,

24

D4.2 - Architecture Specification Analysis and Design

allowing all developed components of SECURED to adapt quickly to potentially alternating demands during all
stages of the overall integration. Finally, through the Docker Compose functionality, the integration overseer
is able to organize the overall communication, co-operation and most importantly, selective isolation of the
different containers, networks, and consistent data volumes.

Month 18 of the SECURED timeline marks the initiation of the overall integration, and up to this point, some
preliminary, lightweight containers and communication configurations have been set up. Additionally, the core
components of the CI/CD procedure have been established, whereas the automation rules and regulations are
being investigated. Another very important aspect of the project integration is a centralized registry for keeping
the Innohub services’ Docker images, and for that matter, the SECURED Container Registry has been set up,
available to host all partners’ containerized software. Lastly, the potential incorporation of additional orchestra-
tion technologies such as Kubernetes for the overview and synchronization of microservices is currently being
explored.

3.3.3 SECURED communication module

The SECURED Communication Module ensures secure, reliable and efficient exchange of messages and infor-
mation among different parts of the project infrastructure. The central component of the module, Kafka, offers
a distributed messaging system. The fundamental unit of organization, Kafka topics, divide data streams to en-
able cascading data pipelines. Producers write data to specific threads, while consumers read from it, enabling
decoupled and scalable communication. The module ensures data integrity through end-to-end encryption,
strong authentication and authorization mechanisms. Kafka’s replication protocol and configurable retention
policies guarantee fault tolerance and historical data analysis.

Integrated with the SECURED Orchestrator, the Communication Module plays a critical role in enabling inter-
service communication and guaranteeing efficient information transfer between system elements. Through
real-time monitoring tools, the module ensures the health and performance of communication processes, al-
lowing for proactive issue detection and resolution. This integration greatly improves the overall project infras-
tructure by improving resilience, scalability and security, fostering smooth and reliable communication across
all components.

3.3.4 Formal Verification

In the activity of formal verification, UNSS is developing two modules: an ontology-based module designed
to ensure the consistency and integrity of the SECURED framework, and a module designed to evaluate the
accuracy of synthetically generated data compared to real data. The first solution employs an ontology-based
approach to model the key components of the architecture, identify potential threats, and verify system consis-
tency. The ontology is divided into three main parts: the system sub-ontology, the data flows sub-ontology and
the threat sub-ontology. The ontological model is populated with detailed data representing all components,
libraries, relationships, and potential threats within the SECURED framework. This includes data flow mod-
eling to capture how data moves through the system, enabling a comprehensive verification of data access,
privacy compliance, and authorization. The module leverages the Semantic Web Rule Language (SWRL) to
define logical relationships and constraints that ensure system consistency and identify threats. An example
rule includes the following:

User(?p) ∧HealthData(?d) ∧ hasRole(?p, ?r) ∧AuthorizedRole(?r, ?d) =⇒ hasAccess(?p, ?d)

which ensures that a user can access specific datasets only if they have an authorized role for that data. A
reasoner, such as Pellet[3] or HermiT[4], is used to apply the SWRL rules to the populated ontology. The
reasoner performs automated reasoning to verify system consistency and identify threats based on the defined
rules. Throughout the development process, the tool undergoes rigorous testing and validation using real-world
scenarios and data sets. This ensures the accuracy and effectiveness of the SWRL rules and the reasoning

25

D4.2 - Architecture Specification Analysis and Design

process. The tool generates reports based on the reasoner’s output, highlighting areas where the system’s con-
sistency is maintained and identifying any inconsistencies or threats. These reports are essential for identifying
issues and improving the system configuration.

The second solution is the synthetic data validation module (SynthVal)2, which is designed to evaluate the
accuracy of synthetically generated data compared to real data. This module plays a critical role in ensuring
the reliability of synthetic data, particularly in safety-critical domains such as medical education and training.
SynthVal requires two main inputs: a set of synthetically generated data formatted consistently with the real
dataset for meaningful comparison, and a corresponding set of real data, which serves as the benchmark for
evaluating synthetic data quality. The module produces a series of measurements that provide insights into the
fidelity of synthetically generated data. It also aims to identify specific data or features that contribute to lower
fidelity whenever possible. Currently, the primary focus is on evaluating medical images contained within open
datasets. One of the main challenges in evaluating these datasets lies in their high dimensionality. Therefore,
current efforts are directed towards optimising methods to extract vectorial features from these images, which
will facilitate more effective analysis.

2Since SynthVal has a somewhat different functionality than the formal verification ontology based module, we provide separate tables
for each one of the formal verification modules with their technical specifications and interactions in section 5

26

D4.2 - Architecture Specification Analysis and Design

3.4 Knowledge Base

In Figure 14, the architecture of the SECURED Knowledge Base schema is presented, as derived from the
Task 4.3 description and the SECURED GA, along with the WP4 iterations that introduced corrections and
essential refinements to specific components and connections. In general, the Knowledge Base includes the
following components:

• the container registry for the SECURED applications/docker containers/docker container images,

• the legal documents repository for retaining the private legal documents referring to datasets,

• the toolbox repository for storing ready-to-use software tools,

• the SECURED Data Inventory aiming to store metadata for existing datasets,

• the Privacy Preserving AI component for storing and indexing the developed AI-based solutions of the
project,

• the Synthetic Data Cache for facilitating the storage and indexing of generated synthetic data,

• the SECURED Data Lake for storing synthetic datasets, the trained AI models and the stand-alone soft-
ware tools,

• the knowledge graph for assisting the idea of organizing the semantic information of the existing datasets,

• the API core and the corresponding endpoints that provide acces to the data and the related information.

Figure 14 – The SECURED Knowledge Base architecture.

27

D4.2 - Architecture Specification Analysis and Design

3.4.1 SECURE Data Lake

For addressing the demanding requirements of the project regarding the data storage, a Data Lake scheme is
proposed aiming to provide flexibility, scalability and robustness. In this way, heterogeneous data, retrieved from
different sources can coexist in such a centralized architecture, without the need of having a specific structure.
The proposed scheme consists of three major components from the perspective of storage:

• The Containers/Applications Data Lake - including docker containers and images of SECURED applica-
tions along with software tools constituting the SECURED toolbox repository.

• The Synthetic–Data Data Lake - containing the synthetic data generated by the AI-based algorithms of
T2.3.

• The AI Models Data Lake - storing the privacy preserving AI models and the corresponding weights of
their trained instances.

From this point of the document and further, the Containers/Applications Data Lake will be referred as KB_DL_CA
(Knowledge Base - Data Lake - Containers/Applications), the Synthetic–Data Data Lake as KB_DL_SD (Knowl-
edge Base - Data Lake - Synthetic Data) and the AI Models Data Lake as KB_DL_AI (Knowledge Base - Data
Lake - AI models). The functionality and utilization of these components is explained in the following subsec-
tions, along with the interaction with the rest of the architecture.

In an attempt to enhance the functionality of the Data Lake, a set of databases have been adopted for preserving
essential metadata and building a strong indexing mechanism. Four distinct databases can be identified:

• the Synthetic Data Cache, abbreviated as KB_DB_SD

• the Data Inventory, referred to as KB_DB_DI

• the AI Models database, designated as KB_DB_AI

• the Container Registry database, abbreviated as KB_DB_CR

also accompanied by a Legal Documents Repository, referred to as KB_DB_LD.

3.4.2 Container Registry

Various services will be developed and integrated according to the requirements extracted from the correspond-
ing tasks of the Grant Agreement. To provide ease of access, the Container Registry is introduced in order to
collect metadata and store the service/application files by utilizing KB_DB_CR and KB_DL_CA. The related
API endpoint is described below.

Container Registry API endpoint:

• POST /containerRegistry/upload This call uploads the zipped folder of the application or the docker
container image to the KB_DL_CA. At the same time, it creates a new entry in the KB_DB_CR adding
information like the name and the link of the application that should be provided as parameters to the call.
The successful response includes the id of the new entry.

• GET /containerRegistry/appInfo/appId Given an existing application identifier, this call returns a JSON
object containing all the requested information.

• PUT /containerRegistry/appUpdate/appId Given a valid application identifier, this call alters the corre-
sponding entry and returns the proper success code.

28

D4.2 - Architecture Specification Analysis and Design

3.4.3 Toolbox Repository

Specific applications, within the SECURED project, will be provided to the user as standalone tools that can be
downloaded. To achieve this, the Toolbox Repository is introduced providing a proper API endpoint.

Toolbox Repository API endpoint:

• POST /toolboxRepository/uploadTool A zipped folder, containing the software files, along with addi-
tional metadata should be given in order for the call to be successful. In such a case, the zipped folder
is uploaded, stored in the KB_DL_CA and the related metadata entry is retained in the corresponding
database KB_DL_CA. If this process is completed, the tool identifier is returned.

• GET /toolboxRepository/getTool/toolId Given an existing service identifier, this call returns a JSON
object containing all the requested information.

• PUT /toolboxRepository/toolUpdate/toolId Given a valid service identifier, this call alters the corre-
sponding entry and returns the proper success code.

3.4.4 SECURED Data Inventory

The Data Inventory refers to private datasets, provided by the partners of the SECURED project, and open
datasets proved to be essential for the purposes of the project. Since these datasets exist either on the premises
of the corresponding partner or somewhere on the web, the Data Inventory aims to create a proper mechanism
to index them by employing the KB_DB_DI.

Data Inventory API endpoint:

• POST /dataInventory/create Creates a new entry to the KB_DB_DI database by copying the parameters
to the matching columns of the database table. The successful response returns the id of the new entry.
Simultaneously, the new entry information feeds the Knowledge Graph component, resulting in the update
of the nodes and the related links.

• GET /dataInventory/getDatasetInfo/datasetId Providing a valid dataset identifier, this call will return a
JSON object with the information related to the specific dataset.

• PUT /dataInventory/datasetUpdate/datasetId Given an valid dataset identifier, this call alters the corre-
sponding entry and returns the proper success code. In this situation, the Knowledge Graph is update as
well.

3.4.5 Legal Documents Repository

The Legal Documents repository refers to private legal documents, provided by the partners of the SECURED
project, and open legal documents proved to be essential for the purposes of the project. Since these documents
exist either on the premises of the corresponding partner or somewhere on the web, the Legal Documents
repository aims to create a proper mechanism to index them by employing the KB_DB_LD.

Legal Documents API endpoint:

• POST /legalDocuments/create Adds a new entry to the KB_DB_LD database by mapping the provided
parameters to the appropriate columns of the database table. Upon success, it returns the ID of the new
entry. This entry information is also used to update the nodes and related links in the Knowledge Graph
component.

• GET /legalDocuments/getDocumentInfo/documentId Returns a JSON object containing details about
a specific document when given a valid document identifier.

29

D4.2 - Architecture Specification Analysis and Design

• PUT /legalDocuments/documentUpdate/documentId Modifies an existing entry identified by a valid
document identifier and returns a success code. The Knowledge Graph is updated accordingly to reflect
the changes.

3.4.6 Privacy Preserving AI-trained models

The Privacy Preserving AI points to the generative AI models of T4.3, trained to generate synthetic data. Their
architecture and corresponding node-weights files are stored in the KB_DL_AI, while the related metadata are
saved in the KB_DB_AI.

Privacy Preserving AI API endpoint:

• POST /AIModels/upload Uploads the aforementioned files and creates a new entry to the KB_DB_AI
database by copying the parameters. The successful response returns the id of the new entry.

• GET /AIModels/getModelInfo/modelId Providing a valid model identifier, this call will return a JSON
object with the information related to the specific dataset.

• PUT /AIModels/modelUpdate/modelId Given an valid model identifier, this call alters the corresponding
entry and returns the proper success code.

3.4.7 Synthetic Data Cache

Synthetic Data Cache refers to the synthetic data generated by AI models of T2.3. The generated datasets
should be stored in the KB_DL_SD and the related metadata in the KB_DB_SD.

Synthetic Data Cache API endpoint:

• POST /syntheticDataset/upload Uploads the selected, synthetic dataset and creates a new entry to the
KB_DB_SD database by using the inserted parameters. The id of this new entry is returned in case of a
successful response.

• GET /syntheticDataset/getDatasetInfo/datasetId Providing a valid dataset identifier, this call will return
a JSON object with the information related to the specific dataset.

• PUT /syntheticDataset/datasetUpdate/datasetId Given an valid model identifier, this call alters the cor-
responding entry and returns the proper success code.

3.4.8 UML - Sequence diagrams

In Figures 15, 16, and 17, the sequential diagrams of the POST, GET and PUT methods are presented re-
spectively, illustrating their general concepts according to the aformentioned explanations of the API endpoints.
About the POST method including file uploading process, the following steps occur:

1. The actor (user or service) selects the file to upload and inserts the matching parameters.

2. The call to the proper API endpoint is initiated.

3. The compliance of the file is assessed by the server and, then, it is sent to the Data Lake.

4. The validity of the metadata is examined by the server and, then, it is saved to the database.

5. The final POST response is returned to the actor.

30

D4.2 - Architecture Specification Analysis and Design

In case of a POST method, depicted in Figure 15 without the file uploading included, the same procedure is
followed without taking into account the actions highlighted in orange.

Figure 15 – The SECURED Knowledge Base Common API - POST.

Regarding the GET method, depicted in Figure 16, including file uploading process, the following steps occur:

1. The actor (user or service) inserts the id of the file to download

2. The call to the proper API endpoint is initiated.

3. The validity of the given identifier is reviewed by the server.

4. The server searches the corresponding database to locate the identifier.

5. If the identifier exists, the related file is returned to the actor along with the metadata of the entry encap-
sulated in the GET response body.

In case of a GET method without the file downloading included, the same procedure is followed without con-
sidering the actions highlighted in orange arrows.

31

D4.2 - Architecture Specification Analysis and Design

Figure 16 – The SECURED Knowledge Base Common API - GET.

About the PUT method, as depicted in Figure 17, the following steps occur:

1. The actor (user or service) inserts the id of the entry to be altered.

2. The actor (user or service) inserts the new parameters.

3. The call to the proper API endpoint is initiated.

4. The validity of the given identifier is assessed by sending a proper request to the database.

5. If the identifier is validated, the new parameters are reviewed by the server.

6. The server sends the metadata to the database

7. The PUT response is return to the user including the identifier, in case of a successful transaction

32

D4.2 - Architecture Specification Analysis and Design

Figure 17 – The SECURED Knowledge Base Common API - PUT.

3.5 Innohub Services

The Innohub Services architectural block consists of two main service categories, namely the Platform and
the Privacy Preserving Services. Each block is responsible for offering specific functionalities to the user, thus
elevating the Innohub to a secure and trusted workshop offering different capabilities per use-case. The decen-
tralized nature of the SECURED federated infrastructure is represented through the distinctive yet collaborative
design and categorization of the available services, offered through the Innohub.

3.5.1 Platform Services

The platform services is comprised of three high-level SECURED services that enable the user to oversee and
manage the data they own in a top-tier manner. Additionally, users are presented with options regarding the
best governance of their data according to the already developed machine and deep learning techniques of
the SECURED project. The Anonymisation Decision Support service provides dedicated support for selecting
the most suitable anonymisation technique, tailored to the specific characteristics of a health dataset. Cross-
border data processing legal/GDPR compliance is a dataset-specific legal framework to ensure the dataset’s
compliance with EU or country-specific legislation per case. Finally, the ML, AI, FL model Marketplace is a
repository of anonymised, unbiased, trained models that have been produced by the SECURED ecosystem,
available to the user for exploitation per use-case.

33

D4.2 - Architecture Specification Analysis and Design

3.5.1.1 Model Markeplace ML/AI/FL

The Model Marketplace component serves as a comprehensive repository of anonymised, unbiased, and
trained models developed by the SECURED ecosystem. The purpose of this repository is to provide users
with access to a collection of models that can be employed per use case, ensuring that the proposed Ma-
chine/Deep/Federated Learning solutions are tailored to their specific needs. For accessing this repository, a
front-end interface is used in order for the user to be able to search and download the desired model. The main
component of the interface will be a search bar, serving the searching mechanism, followed by several filter
options, including fields for entering the model name, selecting the use case from a drop-down menu, choosing
the category, entering the developer’s name, and specifying the date range for the model’s creation date.

To begin the search, the user enters relevant criteria into the provided fields. For instance, the user might type
part of the model name into the text input field, select "Mammogram" as the use case from the drop-down menu,
choose "breast" from the category options, enter the developer’s name if known, and specify a date range. Once
all desired filters are set, the user clicks the "Search" button to initiate the search. The application processes
the search query and displays the results in a list format. Each search result is presented with key information
including the model name, a short description of the model’s functionality, its primary use case, category,
developer, and the creation date. This allows the user to get a quick overview of the options available. After
reviewing the model information, the user can download the model by clicking the corresponding "Download"
button, which is prominently displayed on the model’s row, within the list. A download dialog appears, asking
the user to confirm the process and select to download or not the related JSON file as well. Once the user
confirms, the download begins, and a progress bar or notification indicates the download status.

3.5.1.2 Anonymisation Decision Support

The Anonymisation Decision Support component is meant to provide anonymisation guidelines for a given
dataset and given constraints. Careful consideration is required to determine which measures are sufficiently
adequate, especially when dealing with data in the health care domain. The central idea is that the user will
submit the characteristics of the dataset, the requirements in terms of security, and the other constraints, such
as the performance ones and based on the input provided by the user, the Anonymisation Decision Support will
direct the user toward the most suitable solution for the given problem. There is a wide choice of anonymisation
schemes available, and they all depend on a wide range of parameters. Because of this, the Anonymisation
Decision Support can be coupled with design space exploration to ensure that the selected algorithms, param-
eters ranges and combinations are the best fit for the given characteristics of the dataset and the associated
requirements / constraints.

The envisioned workflow of the Anonymisation Decision Support is as follow:

• The data owner provides, via a web interface, the characteristics of the data, the requirements in terms of
performance, and the requirements in terms of privacy (these are provided by a means of guided dialog)

• The web platform reports the most suitable combination of parameters / algorithms that fulfill the privacy
and the other provided requirements

34

D4.2 - Architecture Specification Analysis and Design

3.5.1.3 Legal/GDPR Compliance Check

This service aims to assist the SECURED Innohub user in identifying the relevant legislation and guidelines
that are associated with the functions he/she want to utilized within the Innohub. The services will operate
in a online "wizard" fashion guiding the user to check if the approach on anonymizing or synthesizing data is
compliant with the EU regulations and the offered privacy guidelines. For that, an ontology graph of the existing
Privacy guidelines and associated regulations will be created by technical partners linked with the relevant
documents stored in the SECURED Knowledge base. The service guided by the interactive user input will
communicate with the Knowledge base through a dedicated API in order to fetch compliant privacy guidelines
and also regulatory frameworks on the datasets registered through the Innohub. The source of the visualised
information will be collected from the pertinent legal and ethical framework identified. In particular, legal norms
established under the General Data Protection Regulation (GDPR), including, for instance, relevant GDPR
definitions, principles and the data protection impact assessment have been reported in D1.2 [5]. These have
been complemented by pertinent rules (hard law and soft law) in relation to data, data governance laws, artificial
intelligence, and cybersecurity, as described in D2.5 [6], creating a regulatory roadmap and framework that
contributes to the implementation of the SECURED Innohub and technologies. Eventually, the service will take
into account the opinions and recommendations issued by independent EU bodies, such as the European Data
Protection Board (EDPB) and its predecessor Article 29 Working Party (WP29), intending to ensure a consistent
application of data protection provisions throughout the EU (e.g., WP29 Opinion 05/2014 on Anonymisation
Techniques3; EDPB Guidelines 04/2019 on Article 25 Data Protection by Design and by Default4), or relevant
guidelines issued by the European Union Agency for Cybersecurity dedicated to achieving a trusted cyberspace
and a high common level of cybersecurity (e.g., ENISA Data Pseudonymisation: Advanced Techniques and Use
Cases5).

3.5.2 Privacy Preserving Services and Innohub Tools

At the heart of the SECURED architecture lies the Privacy Preserving Services component, a comprehensive
suite of essential resources for medical data bias assessment and amendment of possible biasing violations,
in a plethora of ways. Additionally, users have access to the Synthetic Data Generation engine, enabling the
creation or enrichment of existing datasets with realistic yet privacy-preserving entities for medical research and
analysis purposes.

Apart from utilizing the interface for assessing, traversing, and transforming privacy-preserved services, Inno-
hub users have the option of downloading these functionalities as tools, as standalone software versions that
can be deployed on the user’s premises. Architecturally, the Innohub Tools lie on the same level as the Ser-
vices (see Figure 1). The tool versions of the components are offered with a handbook of instructions on how to
execute, maintain, and experiment with the developed technologies, in addition to examples for efficient usage
and maximum exploitation. A number of functionalities, specifically the tools related to anonymisation are not
available as services.

3Article 29 Data Protection Working Party “Opinion 05/2014 on Anonymisation Techniques”. Adopted on 10 April 2014 WP216. {https:
//ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2014/wp216_en.pdf}

4European Data Protection Board “Guidelines 4/2019 on Article 25 Data Protection by Design and by Default”. Version 2.0. Adopted on
20 October 2020. https://www.edpb.europa.eu/sites/default/files/files/file1/edpb_guidelines_201904_dataprotection_
by_design_and_by_default_v2.0_en.pdf;)

5European Union Agency for Cybersecurity “Data Pseudonymisation: Advanced Techniques and Use Cases", 28 January 2021.
https://www.enisa.europa.eu/publications/data-pseudonymisation-advanced-techniques-and-use-cases

35

{https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2014/wp216_en.pdf}
{https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2014/wp216_en.pdf}
https://www.edpb.europa.eu/sites/default/files/files/file1/edpb_guidelines_201904_dataprotection_by_design_and_by_default_v2.0_en.pdf
https://www.edpb.europa.eu/sites/default/files/files/file1/edpb_guidelines_201904_dataprotection_by_design_and_by_default_v2.0_en.pdf

D4.2 - Architecture Specification Analysis and Design

3.5.2.1 Synthetic Data Generator Service and Tool

The Synthetic Data Generator (SDG) is the component that is in charge of generating the different data types
that are provided by T2.3. The current main data modalities to generate, are the following:

• Images:

– Mammograms
– Pathological image
– Chest X-ray
– Missing MRI slices

• Time series:

– Fetal Heartbeat Rate (CTG)

The service/tool is modularized as shown in Figure 18. The SECURED library is the main entry point to the
application for both the Application Programming Interface (API) and the Tool User Interface (UI). This is done
to avoid code duplication and provide different interfaces for the same tools. The SECURED library contains
the SDG core, which is the main engine for all the available generators that were listed before.

Figure 18 – Synthetic Data Generator (SDG) module structure. The SDG core integrates all the different generator models, while the library provides a
common interface for both the Service and the Tool.

Service flow specification

The features of both the tool and the service can be divided into three distinct functionalities:

1. Generate data without customization: Request the generation of data of a particular type and modality
without any other kind of input.

2. Generate data requesting specific characteristics (conditioning): Request the generation of data of a
particular type and modality and specifying characteristics of the generated image, e.g., the density of the
tumor in a mammogram.

3. Interpolate data or transfer data from one domain to another: Given a set of data, create data points that
are in the middle, i.e., from an Magnetic Resonance Imaging (MRI) scan, create a new image that falls
between two scans in the 3D representation.

36

D4.2 - Architecture Specification Analysis and Design

The first and second functionalities are described in Figure 19; they are the basic ones, as they refer to invoking
the generator without or with parameters, e.g., conditioning parameters to apply to the model to generate a
given class of data. If no parameters are given, the first functionality is provided. If parameteres are given,
the second functionality is provided. In the sequence diagram of Figure 19, Innohub interacts with the API
performing a request to generate the data and, then the API internally handles the petition, e.g., queuing, and
when possible it interacts with the library/SDG Core to get the appropriate generator and use it. The results are
stored in the file system and subsequently sent to the Knowledge Base.

Figure 19 – Sequence diagram of generate data (with or without paremeters). Covers functionalities 1 and 2.

In a similar fashion, Figure 20 shows the generation of data using input data as a basis. These data might come
from the Knowledge Base; however, this is not defined yet. This particular case covers the third functionality,
e.g., interpolate between two existing MRI scans to create one that is in the middle.

37

D4.2 - Architecture Specification Analysis and Design

Figure 20 – Sequence diagram for generate data using pre-existing data. Covers functionality 3.

Finally, as auxiliary diagrams, Figure 21 shows the flow on how to retrieve the generators to be used and
Figure 22 requests the status of the executions from the Synthetic Data Generator (SDG).

38

D4.2 - Architecture Specification Analysis and Design

Figure 21 – Get generator

Figure 22 – Get run status

3.5.2.2 Unbiasing Service and Tool

The Unbiasing Service/Tool is the component responsible for mitigating existing bias in AI service. The service
is not yet implemented. With potential modification during its implementation, the service will be modularized
as shown in Figure 23. Fairness mitigation would be divided in three submodules:

• The sub-component dedicated to pre-processing approaches, that mitigates the bias directly on the dataset
potentially used during AI model training;

• The sub-component dedicated to in-processing approaches, that mitigates the bias during AI model train-
ing;

• The sub-component dedicated to post-processing approaches, that mitigates the bias directly on the
dataset potentially used during AI model training.

Details about pre-processing, in-processing, and post-processing methods for bias mitigation are given in De-
liverables D3.1[7] and D4.1[1].

39

D4.2 - Architecture Specification Analysis and Design

Figure 23 – Unbiasing service module structure.

In the sequential diagrams provided in Figures 24, 25, and 26:

• The user is the actor who want to train AI model;

• The server is a device with computational and storage ability;

• fairness_mitigation is the component dedicated to mitigation of bias.

The sequential diagram for the first subcomponent is shown in Figure 24. The user prepares a configuration
file with the name of the method she wants to use, the path to the dataset, the sensitive attribute, etc. The
fairness_mitigation tool applies the method chosen and provide to the user the new version of the dataset. The
user then uses the new dataset to train her AI model.

Figure 24 – Sequential diagram for preprocessing approach.

The sequential diagram for the second subcomponent is shown in Figure 25. The user prepares a configu-
ration file with the name of the method she wants to use, the path to the dataset, the sensitive attribute, etc.
Moreover, she implements the AI Model that will be trained. The fairness_mitigation component proposes tools

40

D4.2 - Architecture Specification Analysis and Design

and examples with inprocessing approaches to mitigate the bias and help the user who uses them to train a
Fair AI model.

Figure 25 – Sequential diagram for inprocessing approach.

The sequential diagram for the last sub-component is given by Figure 26. The user prepares a configuration file
with the name of the method she wants to use, the path to the dataset, the sensitive attribute, etc. Moreover, she
implements and trains her own AI model. The fairness_mitigation component applies post-processing methods
to this AI model and provides to the user fairer version of her AI model.

41

D4.2 - Architecture Specification Analysis and Design

Figure 26 – Sequential diagram for postprocessing approach.

3.5.2.3 Bias Assessment Service and Tool

The Bias Assessment Service/Tool is the component responsible for measuring existing bias in an AI service.
With potential modification during its implementation, the service will be modularized as shown in Figure 27.
The Bias Assessment Service would be divided in two submodules:

• The sub-component dedicated to bias assessment for AI model used for data generation;

• The sub-component dedicated to bias assessment for AI model used for classification.

Details about the metrics used are given in Deliverables D3.1[7] and D4.1[1].

Figure 27 – Bias assessment service module structure.

In the sequential diagrams provided in Figures 28 and 29 :

• The user is the actor who inspects an AI model;

42

D4.2 - Architecture Specification Analysis and Design

• The server is a device with computational and storage ability;

• fairness_metric is the component dedicated to bias assessment.

The sequential diagram of the first subcomponent is shown in Figure 28. The user prepares a configuration file
with information such as the path to a subset of real images (called reference), a path to a subset of generated
images (called generated) with the generator that is evaluated, information about the metrics used, etc. Then
the fairness_metric component extracts from the paths provided by the user, deeper information about the
sensitive attribute values and loads the reference and generated images. Then it computes the metrics and
provides a summary and boxplots about the metrics. The results are made available to the user.

Figure 28 – Fairness_metric for generation task.

The sequential diagram of the first sub-component is given Figure 29. The user prepares a configuration file
with information such as the path to the dataset to inspect, the prediction function or values from the AI model to
inspect, the sensitive attributes, the name of the metrics to compute, etc. fairness_metric computes the metrics
and provides the result to the user.

43

D4.2 - Architecture Specification Analysis and Design

Figure 29 – Fairness_metric for classification task.

3.5.2.4 Anonymizing Tool

The Anonymisation tool, also named DANS 2.0, is developed by Atos and is devoted to preserving data pri-
vacy, mitigating data leakage, avoiding reidentification, and keeping data utility. DANS 2.0 is based on open-
source libraries (ARX6 and Amnesia7) providing data anonymisation techniques (e.g., generalisation, suppres-
sion, microaggregation) and supporting different privacy models (e.g., k-anonymity, l-diversity, t-closeness, km-
anonymity, differential privacy) [1]. These techniques and models will be applied to different types of data
such as Electronic Health Records (EHRs) or time-series data. In the context of the SECURED project, this
anonymisation tool will be offered as a tool and as a service, to be deployed on the data provider infrastructure.
An OpenAPI is provided for facilitating their integration on wider frameworks such as the SECURED Innohub
Platform.

Component description

The Anonymisation tool is based on the architecture design provided in Section 4 of D2.1 [8] comprising the
following five layers, as depicted in Figure 30:

• Anonymisation services layer

• Anonymisation Manager

• Public API

• Visualisation layer

• Storage layer

Based on this architecture, the anonymisation tool is built on different microservices as depicted in Figure 31.

• Legacy DANS microservice provides several privacy models such as k-anonymity, l-diversity, t-closeness
or Differential Privacy to be applied on big datasets.

6https://arx.deidentifier.org/
7https://amnesia.openaire.eu/

44

https://arx.deidentifier.org/
https://amnesia.openaire.eu/

D4.2 - Architecture Specification Analysis and Design

Figure 30 – High-level view of DANS 2.0 architecture [8].

• Amnesia microservice provides as k-anonymity and as km-anonymity addressed to small datasets.

• Anonym Manager microservice is in charge of orchestrating the anonymisation process and offers a ReST
API for accessing the functionalities offered.

• The different microservices can store the datasets, hierarchies, and associated metadata on linked data
bases.

Figure 31 – Anonymisation tool (DANS 2.0) Microservices overview.

Relationship with the use cases
The Anonymisation tool is able to anonymise datasets generated in different environments. As introduced in
D2.1[8], this tool will be involved in the protection of the use cases indicated in Table 4.

45

D4.2 - Architecture Specification Analysis and Design

Table 4 – Uses cases related to Anonymisation Tool

UC1 Real-Time Tu-
mor Classification

UC2 Telemonitoring
for Children

UC3 Synthetic Data
Generation for Edu-
cation

UC4 Access to Ge-
nomic Data

NA X X X

The data to be anonymised will be basically EHRs in a first stage and time-series data later on.

Technical specifications
The Anonymisation tool will be integrated into the Anonymized Data Transformation (ADT) as shown in Sec-
tion 3.5.2.6, which is a composition of all the services related to anonymisation, re-identification, bias and
synthetic data generation. For integration with the rest of the SECURED components and specifically with the
ADT components, a ReST API is provided to facilitate access to the anonymization functions offered. Figure 32
displays the endpoints offered by the API.

This OpenAPI contains three groups of endpoints for accessing the anonymisation functionalities as follow:

• Dataset group for Upload/Download/Storage files and metadata.

– POST /dataset/loadDataset Upload datasets for the anonymisation process. Provides the file and
additional data description of the dataset, file extension, type of data, etc. Returns a file identifier
and suggested tools to anonymise the file.

– GET /dataset/getFile/fileId Download a file dataset providing the file identifier. Returns the dataset.

– GET /dataset/getFileMetadata/fileId Request the file metadata associated to a dataset file. Pro-
vides the file identifier. Returns a list of attributes definition and metadata associated to the dataset.

– POST /dataset/updateFileAttributes/fileId Update the attributes definition of a file dataset. Returns
the file identifier.

• Anonymisation group for accessing anonymisation functionalities.

– POST /anonymisation/anonymise Anonymises a dataset based on specified parameters. Provides
the dataset identifier, the privacy models and the tool to apply. Returns the anonymised dataset, the
anonymised identifier, the anonymisation status, metrics of the process and additional information.

– GET /anonymisation/getAnomymisedFile/fileId Retrieve anonymised file based on the unique
fileId. Provides the anonymised file.

– GET /anonymisation/getStatisticsFile/anonymisedFileId Generates a report including suppres-
sion percentage, number of records, risk profile, etc. Provides the anonymised file identifier. Returns
the statistics report of the anonymisation process.

– GET /anonymisation/analyse Generates information related with the privacy risk and utility related
to the dataset to be anonymised. Provides the file identifier, the tool to apply and the k parameter.

• Hierarchy group for Upload/Download/Create hierarchies.

– POST /hierarchy/loadHierarchy Load an already created hierarchy file. Provides the hierarchy file
and the associated metadata. Returns the unique hierarchy’s name and the tool associated.

– GET /hierarchy/getHierarchyFile/hierarchyName Retrieve hierarchy file based on the unique hi-
erarchy’s name. Provides the hierarchy’s name. Returns the hierarchy file.

– POST /hierarchy/createHierarchy Creates a hierarchy file based on the dataset and the target tool.
Provides the associated dataset identifier, the associated attribute, the type of attribute, the tool to
be used, the hierarchy’s name, the hierarchy type and the additional parameters if needed. Returns
the hierarchy file and the associated tool.

46

D4.2 - Architecture Specification Analysis and Design

Figure 32 – Swagger OpenAPI provided by the Anonym Manager.

The anonymisation process requires to follow several steps for setting up some parameters such as the de-
scription of the dataset, the definition of the attributes, the privacy models and the anonymisation techniques to
apply, etc. In this context, Figures 33, 34 and 35 provides the flow for the anonymisation process, which can
be split in a group of actions as follows:

• Load Dataset: for uploading, storing and describing datasets. Also, updating attributes’ definition (Fig-
ure 33).

• Download Files: for retrieving file datasets (Figure 33).

• Metadata: for retrieving metadata associated to the datasets (Figure 33).

• Hierarchies: for uploading already created hierarchy files and create hierarachies. Also, retrieve hierar-
chy files already created. Also, retrieve hierarchy files already created (Figure 34).

• Anonymise dataset: for setting privacy models and associated parameters (Figure 35).

• Statistics: for obtaining a report of the anonymisation process (Figure 35).

• Analyse dataset: for getting a previous anonymisation analysis (Figure 35).

47

D4.2 - Architecture Specification Analysis and Design

Figure 33 – Upload and download datasets, and get metadata flow.

Figure 34 – Load and create hierarchies flow.

48

D4.2 - Architecture Specification Analysis and Design

Figure 35 – Anonymisation process flow.

Component installation methods

The Anonymisation tool will be deployed as a docker container following the diagram depicted in Figure 36.
Based on the components described in the Technical Specifications Section 5, this docker container comprises
the following microservices:

• The Anonym Manager service

• The Legacy-DANS service

• The Amnesia service

• Other anonymisation services to be included in the future

• A Data Base for storing datasets, hierarchies, and associated metadata.

The upper part of Figure 36 shows the interactions with the ADT components.

49

D4.2 - Architecture Specification Analysis and Design

Figure 36 – Anonymisation tool (DANS 2.0) deployment.

3.5.2.5 Anonymisation Assessment Tool

The service will provide a platform enabling data owners to input details of their datasets (datatype and structure,
parameters, size and population etc.). The service will the return a ranked list of existing de-anonymisation and
re-identification attacks (including those designed as part of the project) that are relevant to their specific data
and parameters, and where available, provide the tools implementing those attacks and guidance on their use
and interpretation of the results. This will enable the data owner to assess their anonymisation strategy against
known threats.

The platform will be web-based, and its development will follow a modular design and implementation concept,
enabling future expandability.

The Anonymisation Assessment Tool will operate as follows.

• User: data owner with access to locally-stored anonymised data. In order to check the assessment results
(last step of the workflow below), access to the original non-anonymised data may be beneficial, but is
not a requirement.

• User interface: web platform, with links to the SECURED library tools.

• Workflow: [Figure 37] the user interacts with the platform following the series of steps below:

– Data owner enters in the web-based anonymisation assessment user interface the parameters of
the anonymised health data (such as electronic health records (EHR) and time-series data), and
(optionally) uploads a small data sample (of non-sensitive test data). The actual data itself should
not be shared to ensure privacy.

– The web platform returns a user-readable known threat (i.e. re-identification attack) list, with user
guidance, including the generality of applicability of the attack, and conditions required for the attack
to be performed (e.g. access to external complementary data sources etc.). In addition, where the
tools implementing the attacks are publicly available (i.e. released publicly with permissive licences,
as well as those created in SECURED) a link to the implementation in the SECURED library is
provided.

50

D4.2 - Architecture Specification Analysis and Design

– The user can manually run the specific tools integrated in the library (see point above) locally, as
the dataset is not uploaded to the platform (if the dataset is vulnerable to re-identification, this would
constitute a data breach). Individual tools output de-anonymisation results against the user dataset.
The web platform provides guidance on the interpretation of the results.

Figure 37 – Data providers and owners, such as doctors or researchers, can use this component for assessing the security of their anonymised health
data against known threats, before sharing.

3.5.2.6 Anonymised Data Transformation toolset

The Anonymized Data Transformation (ADT) consists of four different tools working together: Anonymisation,
Anonymisation Assessment (reidentification), bias assessment, and synthetic data generation, as shown in
Figure 38. The main data flow starts with the application of the Bias Assessment toolkit to evaluate data bias.
If bias is detected then the Unbiasing tool will be applied based on the previous assessment. Additionally, if
bias is detected and can be corrected, the synthetic data generated by the Synthetic Data Generator tool can
be used to increase the misrepresented population. This process can be performed by requesting new data or
using what is already present in the data cache.

The unbiased dataset will then be anonymised by the Anonymisation tool applying the user’s parameters. Once
the dataset is anonymised, the Anonymisation Assessment tool will be applied by the data owner to identify
relevant re-identification attacks, and, through manual local testing on the dataset, that is not uploaded to
the platform, whether the resultant dataset is vulnerable to such attacks. In case the user considers that the
vulnerabilities reported are feasible, or the anonymised dataset does not fulfill the requirements in terms of
utility or privacy leakage, the data will be anonymised again based on new anonymisation parameters, and a
new anonymisation assessment is performed.

Once the resultant dataset fulfills the user requirements, the data will be available for sharing. It must be noted
though, that the anonymisation process will try to mitigate the privacy leakage but also to maintain data utility.
Also, the depicted flow is performed mostly manually by the user as anonymisation and re-identification tools
require interaction with the user. Finally it must also be stated that, as the tools are still work in progress, the
final design might undergo small alterations, in order to fit better with the desired outcomes, but the overall data
flow will remain the same.

51

D4.2 - Architecture Specification Analysis and Design

Figure 38 – Flow for the dataset anonymisation followed in the Anonymised Data Transformation Toolset.

3.5.3 Innohub Development Libraries

This Innohub subsection also hosts use-case-specific Secure Multi-Party Computation (SMPC) and Homomor-
phic Encryption (HE) applications, for further showcasing the inherent power of the developed system. Finally,
the Innohub Tools section contains the SECURED libraries for the development and extension of the Federated
Learning, SMPC, HE, and Anonymisation mechanisms, generated from the source code of each component,
as developed in WP2 and WP3.

3.5.3.1 Privacy Preserving Federated Learning Development Library

The foundation of our privacy-preserving federated learning library will be built upon Flower [9], a widely used
framework in the research community. We are currently considering an enhanced version known as Pybiscus 8

as the primary candidate. However, it is important to note that the final design may undergo minor adjustments
as development progresses. This framework utilizes established solutions like Secure Aggregation to meet
the unique demands of medical applications. By integrating Secure Multi-Party Computation (SMPC) and
Homomorphic Encryption (HE) with Federated Learning (FL), we aim to offer additional customizable privacy
features beyond those inherent to the federated learning protocol.

Furthermore, a private set intersection protocol is utilized in advance to remove any redundancy within the
datasets amongst the clients. Lastly, we will implement privacy-preserving contribution evaluation techniques
such as Leave-One-Out and Include-One-In, to assess the value of each participating client’s contribution.
These allow us to adjust the weight of client updates, hence optimizing the overall performance.

The exact data flow is depicted in Figure 39 as a sequence diagram. During the initialization phase, clients
establish a shared secret using a key-exchange protocol, such as Diffie-Hellman, which is essential for the
Secure Aggregation protocol. This step is followed by a Private Set Intersection protocol to identify and remove
cross-client duplicate records. Subsequently, the client designated as the server initializes the model. It is
important to note that these protocols are distributed and all communication is encrypted to ensure that no
information is disclosed beyond the final results to the participants.

During training rounds, clients train the received models, which are then securely aggregated by the client
acting as the server. The updated model is broadcast to the clients, who subsequently self-evaluate their
contributions before the next round begins. Note that all communication is encrypted via TLS to protect against
potential eavesdroppers, as the communication channel is not inherently secure.

8https://github.com/ThalesGroup/pybiscus/blob/main/README.md

52

https://github.com/ThalesGroup/pybiscus/blob/main/README.md

D4.2 - Architecture Specification Analysis and Design

Figure 39 – Flow for the data within the FL framework.

3.5.3.2 Secure Multiparty Computation Software/Hardware Development Library

The Secure Multi-Party Computation (SMPC) library will leverage and extend and use existing solutions such
as MP-SPDZ to suit the medical application landscape. One of the main contribution of the SECURED library of
SMPC is the integration with the Federated Learning. As proven by previous works in the domain, combining
multiparty computation with federated learning enables additional configurable privacy properties on top of
what is already provided by federated learning alone. Within this landscape, users can specify their particular
requirements whilst benefiting from the vast number of configuration options that come from a general purpose
tool like SMPC.

The integration between SMPC and Federated Learning will be provided in the SECURED library as a set of
functions that will instantiate the needed Federated Learning functionalities with the SMPC ones. Internally,
this extension will use the same data structure of the libraries used as starting point. Since the SMPC library
will be based on existing libraries, it is fundamental to ensure portability and forward compatibility of the added
functionalies. The user that wants to use the SMPC and Federated Learning integration just needs to use
the dedicated functions developed within SECURED, since the SMPC underlying functions and the Federated
Learning support will be transparently instantiated by the dedicated SECURED functions.

53

D4.2 - Architecture Specification Analysis and Design

3.5.3.3 Homomorphic Encryption Software/Hardware Development Library

The approach that is followed for the Homomorphic Encryption (HE) library is similar to the one carried out for the
SMPC one, namely to start from existing libraries and extend them with hardware and software components.
The starting libraries that have been selected as starting point are OpenFHE and Concrete(-ML), since they
provide state-of-the-art implementations of the most important HE schemes. These libraries have however
limitations in performance and in the size of the input that can be processed. These limitation will be addressed
in the SECURED library at different levels, including algorithmic level and architectural level.

At algorithmic level, it is worth highlighting the use of an advanced, data driven pre-processing. In a nutshell,
the pre-processing step developed in SECURED includes and combine packing and decomposition, and it is
applied to the data to be processed homomorphically before they are passed to the cryptographic functions.
The pre-processing step transforms the data into a more HE-friendly representations that allow to improve the
performance and allows to process data of larger sizes. The pre-processing functionalities, will be provided
as set of functions and, together with the related documentation, will be integrated into the whole SECURED
library. Users that want to exploit these functionalities, would have to apply the needed functions before apply-
ing the cryptographic functions. To ensure a wide adoption and an effort-less integration, the pre-processing
functionalities will be using the same data structures of the cryptographic ones.

At architectural level, critical functions will be accelerated by means of specific hardware. Particular attention is
devoted to the design of interfaces between the accelerated functions and the rest of the library. This is important
because on the one side, it is crucial to ensure that the gain obtained by the acceleration is not overshadowed by
the communication cost, on the other, the interface should ensure large flexibility to guarantee easy integration
with libraries developed also beyond the SECURED project.

3.5.3.4 Anonymisation Software/Hardware Development Library [UvA/BSC]

The anonymisation library will group all the anonymisation functions developed within SECURED. In addition to
the methods for anonymisation, one of the main contribution of the library is the definition and use of a common
interface for all the anonymisation services. The interface will allow to easily swap between different methods
as the interaction with data will be standardized using common formats.

The goals of the common interface are mostly two: The first is to provide a single and simple interface to
instantiate all the anonymisation services developed in the SECURED project. The second is to allow an easy
use of the library for further development, thus ensuring a large adoption of the SECURED results beyond the
end of the project.

This library will also be adopted internally in SECURED. For example, this library will be used as part of the
ADT to provide the interaction required between the Anonymisation, Re-identification, Unbiasing and Synthetic
Data Generation tools.

54

D4.2 - Architecture Specification Analysis and Design

4 SECURED Processes and User Interactions

Section 3 showcased the overall SECURED architecture detailing all tools, services, knowledge base and
libraries. This section views the architecture from the scope of different types of users. In Section 4.1, we
present the overall methodology used into identifying users and their interaction points. In Section 4.2 we
identify the four user types outlining their responsibilities and requirements of the architecture and then map
their activities within the SECURED architecture.

4.1 User, Roles and Interactions Methodology

As analytically described in Deliverable 4.1 "State of the Art and initial technical requirements"[1], in SECURED
we follow the user journey and process mapping approach in order to identify requirements and to specify user
interactions within the SECURED system in an effort to address the whole problem of specifying the characteris-
tics and behavior of the system in a user-centric manner. The notion of User Journey (UJ) or Customer Journey
(CJ) as the majority of the academia tends to call it, focuses on the entire user experience and is considered by
an increasing majority of scholars [10] as the optimal method of putting together intuitive, easy to use platforms
with the user at their center. The UJ approach is well-fitting for platform designers and framework architects that
need to create platforms which interact with a broader set of active users. The approach is very much in-line
with the conceptual objectives of SECURED Innohub that aims to create a privacy-related ecosystem.

As described in D4.1[1], the UJ approach includes several stages that include touchpoints, and personas
[11, 12]. Eventually, as latest research indicates, the phases introduce strict contact points between users and
services that allow a platform architect to structure an architecture and the interactions between components
properly yet allowing a certain degree of freedom to adjust the details of those interactions during implemen-
tation. For the sake of completeness, the basic concepts that are considered behind the scenes of the UJ
mapping are presented briefly below. The full description is provided in D4.1[1].

• Stages: They can be considered snapshots of a specific UJ that have conceptually a specific meaning
for the user and they may contain the contact points, called also "touchpoints", between the user and
the service as well as the generated responses in each contact point. A UJ may include one or more
stages that may or may not be encapsulated and also it may include one or more user types, also called
"personas" in them.

• Touchpoints: A touchpoint is a direct or indirect contact [13, 14] of a user with a specific service/component/tool
delivered to him/her via online platforms or other methods of personal interactions [15, 16]. Users form
an experience at each touchpoint [17], which is then aggregated into the UJ.

• Personas: Personas are descriptive models of archetypal users derived from user research. A Persona,
also called in SECURED simply as user type, is a user category that characterizes users that all share
similar goals, motivations and behaviors [18].

The goal of adopting the UJ approach in SECURED is, through depicting user behavior in a systematic manner,
to introduce a User Journey Mapping (UJM) that will allow the project consortium to better understand the high
level functionality of the SECURED Reference architecture and map the interactions of the various personas to
the SECURED architectural components. To align with the SECURED scope, UJM elements defined earlier can
be simplified and the UJ be focused on single, simple, Personas (from this point on described as User Roles)
and touchpoints (considered and visualized as interaction points between the distinct architectural components
of the SECURED). We consider that each user type (a persona) is primarily associated with a single stage,
however during the analysis we have identified some common stages that may be used regardless of the
involved user type. Those common stages (also called common processes in this deliverable) are encapsulated
to the user type specific stages.

Given the above clarifications, in this deliverable, in contrast to the abstraction existing in D4.1[1], we provide
a significantly more analytic view of the UJ approach outcomes that include a sequence diagram type of visual

55

D4.2 - Architecture Specification Analysis and Design

representation of the overall user type experience showing how each type interacts directly and indirectly with
the SECURED architecture components. As described in D4.1[1], the UJM that is followed consists of several
steps:

• Step 1: Set clear objectives for the UJM Initially, a clear series of objectives on what needs to be
achieved through a UJM needs to be provided. This will allow the identification of problems the system
designer needs to solve, as well as ease up the result extraction process.

• Step 2: Identify users and define their actual goals. In this step we specify the user types, describe
their basic characteristics that constitute their identification points. Also, at this step we identify the main
goals of each user type and how they aim to achieve them through SECURED.

• Step 3: Identify all possible user touchpoints. Having identifying User types allow the UJM process to
specify the touchpoints of each user type since those may differ for each user type and his/her interaction
with the components of the SECURED architecture.

• Step 4: Identify user actions for every stage of the journey. This step revolves around user type
actions and specifically what is a user type doing in each step of a predefined path inside the overall user
journey.

• Step 5: Identify potential changes which may compromise the overall flow, technical obstacles,
or pain points. In this step we aim to identify whether users may run into problems during a certain
stage/process. Such problems may hinder the user experience and lead to a problematic UJ.

• Step 6: Identify opportunities for improvement. Identify possible specific issues, bugs, experience
pain points that can be improved in both the short and long run.

Regarding step 1, in SECURED the goal of the UJM is specific and is provided by the corresponding task (T4.1)
description as well as the GA document in general. We aim to identify the key user types of the SECURED
Innohub and map their touchpoints to the SECURED architecture in a clear manner that will facilitate the im-
plementation and integration of the SECURED solution into a realistic prototype. In the following subsections
we provide the outcomes of the above described six-step UJM process for SECURED.

4.2 User Types

By adapting the User Journey Method to the practical needs of the SECURED Project, it was possible to identify
a number of different users and their intended use of the SECURED solution. This document identifies four
specific types of users (UJ personas) as seen in Table 5 and discussed in the following subsections.

Table 5 – Use cases related to Anonymisation Tool

Type Short Description and Main Goals
1 End user Use of tools/services for non-development purposes.
2 Model Developers Develop new model from scratch or download and en-

hance existing anonymised model.
3 Privacy Preserving application Developers Develop new/existing solution enhanced with PET SE-

CURED libraries, use the SMPC/HE library to setup
some PET computation including the establishment of
a server/client model or use the Anonymisation/Unbias
and/or FL libraries to handle PET application data

4 Data Developer Develop new unbiased, anonymised dataset from
scratch or synthetically generated data and register to
SECURED Innohub or enhance existing dataset with
anonymisation/unbiased characteristics and register to
SECURED Innohub

56

D4.2 - Architecture Specification Analysis and Design

4.2.1 End User

The first user type is the End User. The primary objective for the End User is to utilize the SECURED tools
and services to develop products for non-development purposes. The End User is essentially a SECURED
consumer and requires the use of one or more tools and services, as is, of the SECURED Innohub. The
End User downloads and installs tools on their premise and does not register anything to SECURED Innohub.
Examples of such users are the SECURED use-case pilots.

4.2.2 Model Developers

The next user type is the Model Developer. The primary objectives for the Model Developer is either to develop
a new AI/ML model from scratch or download and enhance an existing anonymised model that has been de-
veloped using SECURED tools and services. The Model Developer may require the Anonymised SECURED
Innohub AI models for use in Federated Learning or Deep Learning applications, outside of SECURED control
or engagement. The final product, the model, must be registered to the SECURED Innohub.

4.2.3 Privacy Preserving Application Developers

The third type of user is the Privacy-Preserving Application Developers. The primary objectives for this user type
is to either develop new or existing solution enhanced with PET SECURED libraries, use the SMPC/HE library
to setup some PET computation including the establishment of a server/client model or uses the Anonymisa-
tion/Unbias and/or FL libraries to handle PET application data. The Privacy Preserving Application Developer
requires the SECURED libraries and/or SECURED core services, such as synthetic data generation, for devel-
oping privacy preserving application. The final product, the application, must be registered to the SECURED
Innohub.

4.2.4 Data Developer

The final user type is the Data Developer. The primary objective of the Data Developer is to either develop a
new unbiased, anonymised dataset, from scratch or synthetically generated data, and register to SECURED In-
nohub, or enhance an existing dataset with anonymisation/unbiased characteristics and register to SECURED
Innohub. The Data Developer wants to register a new dataset to be used by SECURED ecosystem first by
downloading or running the Anonymisation Data transformation service, which generates an anonymised ver-
sion of his/her dataset and registers this dataset to the SECURED hub.

4.3 User Journeys

The User Journeys (UJs) defined in this section provide a high level view of a User’s interaction with the SE-
CURED architecture throughout the Innohub. We have involved in such UJ the most critical Reference Archi-
tecture components and we have grouped, for the sake of simplicity, as one component all the Innohub tools
and as one component all the Innohub services. For more details on each individual component and its char-
acteristics as well as more detailed interactions of the User within each component the reader is referred to
Section 3 where such information is provided.

57

D4.2 - Architecture Specification Analysis and Design

4.3.1 Common Processes-Stages

The SECURED architecture may provide two different approaches for providing its functionalities to the users,
mainly functionalities as tools and functionalities as services. Tools are functionalities that can be downloaded
and run offline at the user’s premises whilst services can be used online and are hosted by the SECURED
Innohub. In both cases, the interaction of user types with some tools or services may be the same hence we
can consider such group of interactions as common processes (common UJ stages) that we can present only
once and then encapsulate as black boxes in other processes/stages per user type. The following subsections
outlines the two different viewpoints from the perspective of the user, one for tools and one for services for
the same functionality where it is applicable, that are irrespective of the user types hence common for all user
types.

4.3.1.1 Synthetic Data Generation process

The Synthetic Data Generator (SDG) of SECURED can be instantiated both as a tool and as a service. It has its
own internal tools and a dashboard as well as an API allowing it to have both tool and service type of interaction
with all possible user types. In the following paragraphs and Figures 40 and 41 we provide sequence diagrams
as a result of the SDG UJs.

Figure 40 – Common Process for Synthetic Data Generation as Service

As shown in Figure 40, when SDG is utilized as a service it has a simple interaction with the user. The user
requests some synthetically generated data from the SECURED Dashboard by providing a series of health
data characteristics/configuration. The dashboard, through the back-end orchestrator, calls the SDG service,
uses the relevant API to start the service and feeds the configuration input. The SDG service results are then
provided to the dashboard from which the user can download them. Depending on the final implementation of
the service there may be several intermediate interactions with the user in order to properly setup the service.

Figure 41 – Common Process for Synthetic Data Generation as Tool

As shown in Figure 41, when SDG is utilized as a tool, the user interacts in the same way as all SECURED tools.
The user requests the tool to be downloaded from the SECURED Dashboard, then the request is forwarded
through the orchestrator backend to the Innohub Tools that reside in the Knowledge base toolbox repository,
which is used in order to allow the user to download the tool and perform synthetic data generation on the user
premises offline.

58

D4.2 - Architecture Specification Analysis and Design

4.3.1.2 Bias Assessment/Unbias process

The Bias Assessment and Unbiasing of SECURED can be instantiated as both a tool and a service. The
corresponding common process thus can have two viewpoints (Service or Tool) and consist of a utilization of
both services (or tools). The user provides a dataset that wants to assess its bias level, and if bias is discovered
then proceeds to unbias the dataset. The Unbiasing process may require the use of synthetic data generation,
thus it may utilize the SDG service or tool. After the Unbiasing is finished the dataset is rechecked for bias,
using the bias assessment service or tool. The process finishes when bias is no longer found or is trivial in
the dataset. The common process is presented in Figure 42 for Bias Assessment/Unbiasing services and in
Figure 43 for Bias Assessment/Unbiasing tools. Note that in Figure 43 we provide an optional interaction with
the SDG service but alternatively the process may include the SDG tool in the sequence (not visible in the
figure).

Figure 42 – Common Process for Bias Assessment and Unbiasing as Service

59

D4.2 - Architecture Specification Analysis and Design

Figure 43 – Common Process for Bias Assessment and Unbiasing as Tool

4.3.1.3 Anonymisation process

The Anonymisation process involves the Anonymisation and Anonymisation Assessment tools since such tools
do not have corresponding services. Based on the SECURED use-case specifications and relevant user re-
quirements as well as GDPR compliance reasons there is no need to upload a private dataset to SECURED in
order to Anonymise or Assess the anonymity using an online service. The common process for anonymisation
is presented in Figure 44 and includes the optional usage of the Platform services and the mandatory usage
of the Anonymisation and Anonymisation Assessment tools. More specifically, initially the user requests the
anonymisation tool and the anonymisation assessment tool from the SECURED Innohub by placing a request to
the Dashboard which provides a download link of the Innohub tools stored in the Knowledge Base toolbox repos-
itory. The Anonymisation Decision Support service will provide tailored anonymisation guidelines that the user
can then use to configure the anonymisation tool. If the user wants to check the anonymisation of an existing
anonymised dataset then it follows the exact flow of Figure 44. This includes initially the use of the Anonymi-
sation assessement tool, an evaluation of the tool result that can trigger a re-anonymisation in order to check
the anonymisation strength and possibly increase it. The user in order to properly anonymise/reanonymise the
dataset may request anonymisation support through the dashboard by providing some dataset characteristics.

Figure 44 – Common Process for Anonymisation & Anonymisation Assessment Toolset

In the case where the user has a dataset that he/she wants to anonymise and then check the anonymisation

60

D4.2 - Architecture Specification Analysis and Design

strength by executing the anonymisation assessment, the process that is followed can be seen in Figure 45.
More specifically, the user, after requesting the anonymisation and anonymisation assessment tools and down-
loading them, requests anonymisation guidelines to properly configure the anonymisation tool. The results
of the tool are forwarded to the anonymisation tool, which produces an anonymised dataset, and then feeds
the anonymised data set to the anonymisation assessment tool. If the result of the assessment shows that
the dataset has strong anonymisation, the process is finished; otherwise, new guidelines are requested and
provided, and the anonymisation tool is executed again, thus repeating the whole process.

Figure 45 – Alternative Common Process for Anonymisation & Anonymisation Assessment Toolset

4.3.1.4 Anonymized Data Transformation (ADT) toolset process

The ADT toolset constitutes an advanced tool offered by the SECURED innohub that can get as input some
dataset and provide as output an anonymised version of that dataset with guarantees that it has been checked
for strong anonymity and for not having bias, with the bias removed if found. To achieve these goals the ADT
process orchestrates all the anonymisation related tools of SECURED as is described in more detail in sub-
subsection/paragraph 3.5.2.6. The usage of the tool includes a series of steps that are followed regardless of
the user type hence it can be considered a common process.

As shown in Figure 46, a registered user initially requests through the Dashboard some anonymisation guide-
lines by utilizing the Anonymisation Decision Support service, by providing a series of inputs to the SECURED
Dashboard. Then the Dashboard through the Back-end orchestrator transfers the input to the Anonymisation
Decision Support service that provides user-specific (personalized) anonymisation guidelines as results. Such
guidelines can be used by the user in order to optimally configure the ADT toolset. After acquiring anonymi-
sation guidelines by the SECURED Innohub, the user requests to download the ADT Toolset. This action is
performed through the Dashboard that forwards the request to the Innohub tool repository in the Knowledge
base and allows the download to take place. When the user installs the ADT on premise, outside the SECURED
Innohub platform, he/she provides proper configuration, based on the Innohub provided guidelines and initiates
the anonymisation process of a given dataset, given as input to the toolset.

The ADT Toolset in action utilizes the Anonymisation and Anonymisation Assessment tools, the Bias Assess-
ment and Unbiasing Tools and potentially the SDG service or tool. Initially, the toolset performs a Bias As-
sessment on the Dataset to be anonymised and if bias is discovered the Unbiasing tool is executed. If bias is
considered trivial the anonymisation operation can begin directly without Unbiasing. The output dataset of this
operation is rechecked for bias. In case bias is still not trivial after unbiasing the Unbiasing tool is executed again
with different and possibly more strict parameters. This procedure is repeated until bias is considered trivial. In

61

D4.2 - Architecture Specification Analysis and Design

such case, the unbiased dataset is anonymised using the Anonymisation tool. The anonymised dataset is then
assessed for anonymisation strength, i.e., deanonymisation techniques are applied on the dataset and success
rate (e.g., accuracy of results) is provided. Based on the anonymisation assessment result, the user decides if
the anonymised dataset fulfill her/his privacy-preserving requirements. In such a case the user considers the
process finished, otherwise the process is rerun with different configuration and the result is checked repeatedly
till the user deems the anonymisation process finished.

Figure 46 – Common Process for the Anonymized Data Transformation Toolset

4.3.2 End User UJ

As discussed in Section 4.2.1, the main purpose of the End User is to utilize the Innohub tools and services to
create non development products. As such, initially, the end user signs up to SECURED and creates a new user
account in the Innohub, if the user has no record, he/she must first register by providing some initial personal
information and log-in credentials through the dashboard. This request is forwarded to the Auth services which
generate the required secure credentials which are provided to the Dashboard each time the user logs in to
perform authentication. The sign-up procedure is performed only once and from this point on the end user can
log-in using the credential that he/she originally provided during sign-up to the system, e.g., a username and
a password. Thus, an end user becomes registered on the SECURED platform and can access all tools and
services as discussed in Section 3.2.2 and depicted in Figure 11. After registration / log-in, the end user can
do one of the following (also presented in Figure 47):

• Use the Anonymisation Decision Support service through the SECURED Dashboard by providing a series
of inputs. Then the Dashboard through the Back-end orchestrator transfers the input to the Anonymisation
Decision Support service that provides user-specific (personalized) anonymisation suggestions as results.
Those results reach the end user through the SECURED Dashboard.

• Use the Legal/GDPR Compliance check service through the SECURED Dashboard by providing a series
of inputs. Then the Dashboard through the Back-end orchestrator transfers the input to the Legal/GDPR

62

D4.2 - Architecture Specification Analysis and Design

Compliance Check service that provides to the end user relevant to the user input legal framework as
results. Those results reach the end user through the SECURED Dashboard.

• Request a Privacy-Preserving service from the SECURED Innohub through the SECURED Dashboard.
From the list of offered Privacy Preserving services, the end user can choose his/her preference, access
the service, and see the results through the SECURED Dashboard.

• Download a SECURED Innohub tool from the tool list that is visualized in the dashboard.

Figure 47 – User Journey for the End User.

4.3.3 Model Developer UJ

The model developer user type connects to the SECURED Innohub, as shown in Figure 48. In order to use
an existing Innohub ML/DL model for some health-related application developed in-house, which is considered
out-of-scope for SECURED, that may or may not involve ML/DL model retraining. Alternatively, the model
developer is creating/developing/training a new ML/DL model using datasets generated or anonymised through
the SECURED Innohub and wishes to make such models available to the SECURED community by registering
them in the Innohub and uploading them through the Innohub model market place service.

As with all user types, the process starts by signing-up to the SECURED system. This process is described in
sub-subsection 4.3.2 and is the same for all user types. When a model developer is registered and has logged in
to the SECURED system, i.e., the Dashboard, given that he/she wants to use existing Innohub ML/DL models,
requests a list of the existing models in the Innohub Model Marketplace. The service will contact the Knowledge
base to get the list of models and their metadata and forward the available list to the Dashboard where they
are visualized for the model developer. The model developer then requests that legal requirements/regulation
status of some model and also requests a legal compliance check on the model he/she wishes to use in order
to determine if legally (based on the national or EU regulations) is allowed to use it. The request goes to
the Legal/GDPR Compliance Check service through the Back-end orchestrator component and the service
provides a reply that is visualized through the Dashboard.

Assuming that the model developer complies with the provided legal regulations, this type of user makes a
request to download and use a certain Innohub model. This request is sent from the Dashboard through the

63

D4.2 - Architecture Specification Analysis and Design

Back-end orchestrator to the Model Marketplace service. The service retrieves the model from the Knowledge
base and forwards it to the Dashboard and eventually to the user that downloads it. The UJ for the model
developer of existing Innohub models may end at this point. However, if the model developer wants to extend
the model, e.g., by using the Innohub tools or services to extend it, the UJ has several more steps as shown
in Figure 49. To accommodate the model retraining capability using the Innohub, the model developer can
initiate one or more of the common processes described in subsection 4.3.1. More specifically, the model
developer user type can use the SDG process to generate new synthetic data for retraining, can anonymise
synthetic data or private-sensitive health datasets (that are collected without the SECURED involvement) using
the Anonymisation common process and/or check for bias and perform unbiasing on the datasets using the
Bias Assessment/Unbias common process. Apart from that, the model user may request access to the data
registry, in order to retrieve private datasets that are registered through the Innohub and get information on
the registered datasets through the Dashboard. Then the model developer can contact the dataset owner and
through a bilateral agreement get such datasets for retraining (out of scope for SECURED).

It should be noted though that such datasets can still be anonymised using the SECURED Innohub tools if they
are not already anonymised by their owner. After all or some (depending on the model developer intentions
and capabilities) processes have been performed, the model developer can retrain an Innohub ML/DL model
and use it as he/she sees fit. Finally, the model developer can register the new retrained model to the Innohub
Model Marketplace. To do that, the user registers the model and uploads it to the Dashboard and through the
Back-end orchestrator this action is forwarded to the Model Marketplace service. The service then uses the
Knowledge base API to register and upload the model there and when this action is completed provides to the
Dashboard a receipt that the model has been properly registered to the system. All the above activities are
visualized in detail in Figure 49

64

D4.2 - Architecture Specification Analysis and Design

Figure 48 – User Journey for the Model User or Developer for the use of an existing SECURED model.

In a variation of the above UJ, the model developer may just want to use Innohub datasets or tools/services
for generating them in order to train a new ML/DL model. In such case, shown in Figure 48, the initial steps
of the model developer user journey related to retrieving available models and downloading them are omitted
and the new UJ starts when the user asks if he/she has legal compliance to create a model using the Innohub
datasets/services/tools. As seen in the Figure 48, after this legal compliance check the UJ actions for the model
developer are the same as those in Figure 49.

65

D4.2 - Architecture Specification Analysis and Design

Figure 49 – User Journey for the Model User or Developer for the development of a new SECURED model.

4.3.4 Privacy Preserving Application Developers

The Privacy Preserving Application Developer user type is able to utilize a significant part of the SECURED In-
nohub capabilities that includes the services, the tools and also the development software/hardware libraries of
the project. Given the various possibilities that such a developer may explore using SECURED to develop some
health data related application, the Privacy Preserving Application developer UJ may have various different op-
tional paths that are related to the developers need to create, use or enhance a SECURED Innohub ML/DL
model, to anonymise and utilize datasets or to synthetically generate data and to assess bias and anonymity.
The main mandatory action of the Privacy Preserving Application Developer UJ is the request to download and
use one or more Software/Hardware Development libraries and eventually use them to produce new code for
some application as seen in the initial steps of Figure 50. The non-mandatory steps shown in the Figure50, are
practically the same as those of the model developer UJ (see Figure 49).

66

D4.2 - Architecture Specification Analysis and Design

Figure 50 – User Journey for the Privacy Preserving Application Developer.

In short, the Privacy Preserving Application Developer after downloading the SECURED Innohub develop-
ment libraries he/she uses the steps that exist in the model developer UJ to get an existing Innohub model
from the Model Marketplace that can be retrained enhanced with additional datasets that can be generated
or anonymised using the SECURED common processes. Similar actions can be followed if the Privacy Pre-
serving Application Developer trains his own ML/DL model using SECURED anonymised or/and synthetically
generated datasets (see the model developer UJ for detailed description of the steps). After having the needed
trained ML/DL models a Privacy Preserving Application Developer can use them in a FL setup or individually
to perform prediction or classification. In case, of course, the developed application does not require ML/DL
models as in some pilot scenarios that require SMPC or HE coding for statistics analysis. Eventually, the Pri-
vacy Preserving Application Developer UJ is concluding by registering the developed solution to the Innohub.
When this is concluded a receipt is provided to the user through the dashboard.

67

D4.2 - Architecture Specification Analysis and Design

4.3.5 Data Developer

The final user type, the Data Developer, is mostly focused on generating new Datasets for training or educational
purposes, such as synthetically generated health datasets for medical students to train on, or new datasets to
be used by SECURED Model Developers.

Figure 51 – User Journey for the Data Developer.

As in all user types, the Data Developer signs up, or logs in to the SECURED Innohub. Since the Data Developer
aims to generate a new Dataset, it is imperative to be aware of the relevant legal process and regulations for such
a dataset, hence the Data Developer initially requests a legal regulation compliance check from the Legal/GDPR
Compliance Check service of the Innohub. The Legal/GDPR Compliance Check service provides a result that
is visualized in the Dashboard, based on user input on it.

When having the relevant legal framework available, the data developer can start collecting and preprocessing
data on premise. It is assumed that private health related data are involved which cannot be shared with any
third party and therefore any process on such data prior to anonymisation must occur on the user’s premises.
After this action is completed, the Anonymised Data Transformation Common Process can be used, in the
way described in sub-section 4.3.1.4. Eventually, through the ADT tooset the data developer’s datasets are
anonymised and unbiased without being able to be deanonymised. Apart from the anonymised dataset, the
ADT also provides anonymisation guarantees that the overall anonymisation and unbiasing procedure has
been performed properly. If the data developer user deems that the guarantees are not sufficient, then the
data preprocessing and ADT common process are repeated. When the provided guarantees are considered
sufficient, the process is finished and a new anonymised dataset developed by this user type can be registered
through the Dashboard to the SECURED Knowledge base. An overview of the data developer UJ is shown in
Figure 51.

68

D4.2 - Architecture Specification Analysis and Design

5 Technical Specifications and Interconnections of SECURED
Architecture Components

This section outlines the technical specifications of each component of the Reference Architecture as described
in detail in Section 3. We also take into account the UJ that have been described in Section 4.

The collection of technical specifications as well as the interfaces and interconnections was a group process
that involved all partners of the consortium. Tables 6 and 7 were provided to all partners and required to be
filled for every component (tool or service or engine etc.) described in Section 3 for which each partner is
responsible for. In Tables 6 and 7, we also provide instructions on what each field of the Table means and how
it should be filled by each partner. The functional and non-functional requirements of each tool, component,
and engine that have been described in D4.1[1] were used to complete the tables reported in this Section; the
requirements also appear in this document for completeness in Appendix A. The completed Tables for each
component/sub-component of the Reference Architecture described in Section 3, are presented in the following
subsections. More specifically, subsection 5.1 contains tables that report the Technical Specifications of the
components, while subsection 5.2 lists the interfaces and interconnections of the components.

Table 6 – SECURED Component Technical Specifications Template

Main functional Requirements For the specific component/engine please provide the main functional requirements as
defined in D4.1[1]

Non functional Requirements For the specific component/engine please provide the non functional requirements as de-
fined in D4.1[1]

Development Environment Please specify the development environment and the programming language to be used

Software Requirements Please specify any SW requirements or dependencies

Hardware Requirements Please specify the minimum HW required for the best functionality of the component

Communications Please indicate specific communication requirements between inputs, outputs or between
submodules

Integration Requirements Please indicate any specific integration requirements.

Deployment Requirements Please indicate any specific deployment requirements

Security Requirements Please indicate any specific security requirements

Privacy Requirements Please indicate any specific privacy requirements

Critical Factors Please describe any critical factors that might affect the development or functionality of
the component

Containerisation Please indicate whether this tool/component requires/will be deployed in any/and which
containerised framework

69

D4.2 - Architecture Specification Analysis and Design

Table 7 – SECURED Components Interfaces/Interconnections Template

Main Inputs Please specify the main inputs

Input Data from Partner Please specify from which partner/component data will be used as input

Nature of Expected Input Please indicate the input format that your component would expect (e.g. JSON, image
files, ect)

Related Scenarios Please indicate the use case scenarios requiring this data

Interfaces Please indicate the connection interfaces - APIs

Triggered by Please indicate the events or conditions that trigger the component’s functionality

Main Outputs Please specify the main outputs

Output Data to Partner Please specify to which partner/component data will be sent as output of this
tool/component

Nature of Expected Output Please indicate the output format that your component would be expected to produce (e.g.
JSON, image files, ect)

Related Scenarios Please indicate the use case scenarios requiring this data

Interfaces Please indicate the connection interfaces - APIs

5.1 Technical Specifications

5.1.1 SECURED Front End

Main functional Requirements REQ-PLAT-PORT-M-01, REQ-PLAT-PRIV-M-09, REQ-PLAT-SEC-D-11, REQ-PLAT-
SEC-M-12, REQ-PLAT-SEC-M-13, REQ-PLAT-SEC-D-14, REQ-PLAT-SEC-M-15, REQ-
PLAT-SEC-M-16, REQ-PLAT-SEC-P-17, REQ-PLAT-COMP-M-21, REQ-PLAT-MAINT-
M-27,REQ-PLAT-MAINT-D-28, REQ-PLAT-MAINT-D-29 REQ-PLAT-MAINT-M-30, REQ-
PLAT-MAINT-M-31, REQ-PLAT-MAINT-M-32

Non functional Requirements REQ-PLAT-SEC-M-07, REQ-PLAT-PRIV-M-15

Development Environment React/Next.js, FastAPI, Javascript, Typescript

Software Requirements HTTP communication/certificates, Web Server (e.g., Apache, Nginx, etc.)

Hardware Requirements 2 CPU cores - 16GB RAM - Storage to be determined after initial installations of Manage-
ment DB

Communications Secure HTTP, Hosts ports availability, Data adapters alignment for each data
source/provider

Integration Requirements Docker

Deployment Requirements Web server, Docker setup, Container Registry, Internet access, Browser

Security Requirements SSL, Kafka certificates, Keycloak integration, Elasticsearch

Privacy Requirements N/A

Critical Factors SECURED Dashboard environment will be a web-application, so we need to ensure that
the volume of data derived is among a reasonable range; Individual tool technological
readiness

Containerisation Yes (Docker images)

70

D4.2 - Architecture Specification Analysis and Design

5.1.2 SECURED Back End

Main functional Requirements REQ-PLAT-USE-D-02, REQ-PLAT-USE-M-03, REQ-PLAT-REL-M-04_05, REQ-
PLAT-PRIV-M-08, REQ-PLAT-SEC-M-10, REQ-PLAT-SEC-F-17, REQ-PLAT-SEC-M-
18_19_20, REQ-PLAT-MAINT-M-27, REQ-PLAT-MAINT-D-29, REQ-PLAT-MAINT-M-26,
REQ-DEV-REL-D-58, REQ-DEV-COMP-M-61, REQ-DEV-COMP-M-63, REQ-DEV-
COMP-M-64, REQ-DEV-COMP-M-66, REQ-DEV-COMP-D-67, REQ-DEV-COMP-M-68

Non functional Requirements REQ-PLAT-AVL-D-06, REQ-PLAT-SEC-M-07, REQ-DEV-COMP-D-59, REQ-DEV-USE-
D-60, REQ-DEV-COMP-M-67

Development Environment Python, .yml files for configuring docker and gitlab-ci, bash scripts

Software Requirements Docker engine, gitlab runner

Hardware Requirements Too early- To be determined after first demonstration

Communications Secure HTTP, Hosts ports availability, Data adapters alignment for each data
source/provider, kafka topics, Knowledge Base API

Integration Requirements Docker engine, Gitlab runner

Deployment Requirements Web server, Docker engine, Container Registry

Security Requirements SSL, Kafka certificates

Privacy Requirements N/A

Critical Factors Technological Readiness Level of individual components

Containerisation Yes (Docker images)

71

D4.2 - Architecture Specification Analysis and Design

5.1.3 Knowledge Base

Main functional Requirements REQ-PLAT-COMP-M-21,REQ-PLAT-MAINT-M-22, REQ-PLAT-MAINT-D-23, REQ-PLAT-
MAINT-D-24, REQ-PLAT-MAINT-D-25, REQ-PLAT-MAINT-M-26, REQ-PLAT-PERF-M-
33, REQ-PLAT-DATA-O-34, REQ-PLAT-MAINT-D-35, REQ-PLAT-DATA-M-44, REQ-
PLAT-DATA-D-48, REQ-DEV-USE-M-51, REQ-DEV-USE-D-54, REQ-DEV-USE-D-55,
REQ-PLAT-USE-M-57, REQ-DEV-COMP-M-61, REQ-DEV-COMP-M-68, REQ-PLAT-
PRIV-M-08, REQ-PLAT-SEC-M-10, REQ-PLAT-SEC-M-18_19_20, REQ-PLAT-USE-D-
02, REQ-DEV-REL-D-58

Non functional Requirements REQ-PLAT-SEC-D-11, REQ-PLAT-SEC-M-07, REQ-PLAT-DATA-D-36, REQ-PLAT-DATA-
M-37, REQ-PLAT-PERF-M-38, REQ-PLAT-DATA-M-45, REQ-PLAT-DATA-M-46, REQ-
PLAT-DATA-M-47, REQ-PLAT-DATA-M-49, REQ-DEV-COMP-D-59, REQ-DEV-COMP-D-
60, REQ-DEV-COMP-M-67

Development Environment Python environment (essential packages like Flask etc), Web Ontology Language (OWL),
SQL

Software Requirements Docker Engine

Hardware Requirements Server Machine with at least 4 CPU cores and at least 256 GB RAM

Communications Secure HTTP, Hosts ports availability, Data adapters alignment for each data
source/provider, Knowledge Base API

Integration Requirements Docker Engine

Deployment Requirements Docker Engine

Security Requirements Secure Sockets Layer (SSL) technology

Privacy Requirements All included Datasets and models anonymised

Critical Factors Not Identified

Containerisation No

5.1.4 Innohub Services/Tools

5.1.4.1 Anonymizing Tool

Main functional Requirements REQ-PLAT-USE-D-02, REQ-PLAT-USE-M-57, REQ-DATA-PRIV-M-69

Non functional Requirements REQ-DATA-PRIV-M-39, REQ-DATA-PRIV-M-40, REQ-DATA-PRIV-M-41, REQ-DATA-
PRIV-M-42, REQ-DATA-PRIV-M-43, REQ-DATA-PRIV-D-70, REQ-DATA-PRIV-D-71,
REQ-DATA-PRIV-M-72, REQ-DATA-USE-D-82, REQ-DEV-USE-D-50

Development Environment Java, Kotlin, Javascript

Software Requirements Kotlin, Java libraries

Hardware Requirements 8 Gb RAM

Communications I/O for datasets and configuration parameters

Integration Requirements Docker containers

Deployment Requirements Docker for deploying docker images

Security Requirements SSL

Privacy Requirements To be deployed on the data provider premises

Critical Factors Not Identified

Containerisation Yes (Docker images)

72

D4.2 - Architecture Specification Analysis and Design

5.1.4.2 Anonymisation Assessment Tool

Main functional Requirements REQ-PLAT-USE-D-02, REQ-DATA-PRIV-D-71, REQ-DATA-SEC-M-73, REQ-DATA-SEC-
M-74, REQ-DATA-SEC-M-75, REQ-DATA-SEC-O-76, REQ-DATA-SEC-M-77

Non functional Requirements REQ-DEV-USE-D-50, REQ-DATA-USE-D-82

Development Environment Python, Javascript, Flask, HTML.

Software Requirements Libraries defined in requirements.txt

Hardware Requirements 8GB RAM

Communications I/O for parameters and configurations.

Integration Requirements Docker containers

Deployment Requirements Docker

Security Requirements SSL

Privacy Requirements Deployed at user premises and no uploading of identifiable data

Critical Factors To Be Determined

Containerisation Docker

5.1.4.3 Synthetic Data Generator Tool and Service

Main functional Requirements REQ-PLAT-USE-D-02, REQ-PLAT-USE-M-03, REQ-PLAT-SEC-M-10, REQ-PLAT-PERF-
M-33, REQ-PLAT-DATA-O-34, REQ-PLAT-MAINT-D-35, REQ-DATA-DATA-M-79, REQ-
DATA-DATA-D-80, REQ-PLAT-PRIV-M-08, REQ-DEV-REL-D-58

Non functional Requirements REQ-SHW-PERF-M-78, REQ-PLAT-SEC-M-07, REQ-PLAT-DATA-D-36, REQ-PLAT-
DATA-M-37, REQ-PLAT-PERF-M-38, REQ-DEV-COMP-D-59, REQ-DEV-COMP-D-60,
REQ-DEV-USE-D-50

Development Environment Mainly developed in Python with pytorch (there might be exceptions).

Software Requirements Python libraries defined by requirements.txt

Hardware Requirements GPU with at least 32 GB of RAM

Communications I/O for parameters and configurations. I/O of data that might be big (from MB to GB).

Integration Requirements Platform capable of running dockers that deploy an API.

Deployment Requirements Platform capable of running dockers that deploy an API. A DB to interchange data.

Security Requirements SSL

Privacy Requirements N/A

Critical Factors Insufficient resources for SDG execution as a tool or service

Containerisation Yes (Docker images)

73

D4.2 - Architecture Specification Analysis and Design

5.1.4.4 Anonymised Data Transformation Toolset

Main functional Requirements This tool inherits all the requirements of the Bias Assessment, Unbiasing, Anonymisation,
SDG and Anonymisation Assessment tools, REQ-PLAT-USE-D-02

Non functional Requirements This tool inherits all the requirements of the Bias Assessment, Unbiasing, Anonymisation,
SDG and Anonymisation Assessment tools

Development Environment Python, Java, Javascript

Software Requirements Python libraries, Javascript libraries

Hardware Requirements high end Personal Computer with mid-range GPU

Communications HTTPS

Integration Requirements Knowledge Base integration

Deployment Requirements Toolbox repository, on premise deployment

Security Requirements SSL, HTTPS

Privacy Requirements N/A

Critical Factors Not identified

Containerisation Yes (Docker container)

5.1.4.5 Bias Assessment Service and Tool

Main functional Requirements REQ-PLAT-USE-D-02, REQ-PLAT-USE-M-03, REQ-PLAT-SEC-M-10, REQ-PLAT-PERF-
M-33, REQ-PLAT-DATA-O-34, REQ-PLAT-MAINT-D-35, REQ-DATA-REL-M-88; REQ-
DATA-REL-M-89; REQ-DATA-REL-M-90; REQ-DATA-REL-M-91; REQ-DATA-REL-M-92;
REQ-DATA-PRIV-M-93, REQ-PLAT-PRIV-M-08, REQ-PLAT-PRIV-M-08, REQ-DEV-REL-
D-58

Non functional Requirements REQ-PLAT-SEC-M-07, REQ-PLAT-DATA-D-36, REQ-PLAT-DATA-M-37, REQ-PLAT-
PERF-M-38, REQ-DEV-COMP-D-59, REQ-DEV-COMP-D-60

Development Environment Python >=3.10 (containerized in a Docker)

Software Requirements Python libraries

Hardware Requirements PC or Server with Few CPU and RAM proportional to the datasets that are processed

Communications HTTPs, SFTP for I/O for datasets, models and configuration parameters

Integration Requirements Integration to Container Registry and to Toolbox repository, integration with SDG ser-
vice/tool

Deployment Requirements As microservice in cloud server or as a docker container

Security Requirements SSL, Secure dataset transmission

Privacy Requirements N/A

Critical Factors Not identified

Containerisation Yes (Docker container)

74

D4.2 - Architecture Specification Analysis and Design

5.1.4.6 Unbiasing Service and Tool

Main functional Requirements REQ-PLAT-USE-D-02, REQ-PLAT-USE-M-03, REQ-PLAT-SEC-M-10, REQ-PLAT-PERF-
M-33, REQ-PLAT-DATA-O-34, REQ-PLAT-MAINT-D-35, REQ-DATA-PRIV-M-94; REQ-
DATA-PRIV-M-95; REQ-DATA-PRIV-M-96; REQ-DATA-PRIV-M-97; REQ-DATA-PRIV-M-
98, REQ-DEV-REL-D-58

Non functional Requirements REQ-PLAT-SEC-M-07, REQ-PLAT-DATA-D-36, REQ-PLAT-DATA-M-37, REQ-PLAT-
PERF-M-38, REQ-DEV-COMP-D-59, REQ-DEV-COMP-D-60, REQ-DEV-USE-D-50

Development Environment Python >=3.10 (containerized in a Docker)

Software Requirements Python libraries

Hardware Requirements PC or Server with Few CPU and RAM proportional to the datasets that are processed

Communications HTTPs, SFTP for I/O for datasets, models and configuration parameters

Integration Requirements Integration to Container Registry and to Toolbox repository, integration with SDG ser-
vice/tool

Deployment Requirements As microservice in cloud server or as a docker container

Security Requirements SSL, Secure dataset transmission

Privacy Requirements N/A

Critical Factors Not identified

Containerisation Yes (Docker container)

5.1.4.7 Formal Verification

Main functional Requirements REQ-PLAT-SEC-M-102

Non functional Requirements REQ-DEV-USE-D-50, REQ-DEV-USE-D-52, REQ-DEV-USE-D-53, REQ-DEV-AVL-M-56,
REQ-PLAT-REL-M-103

Development Environment Python

Software Requirements Python environment and various packages (specific packages not still defined)

Hardware Requirements No particular HW requirements

Communications NA

Integration Requirements NA

Deployment Requirements NA

Security Requirements NA

Privacy Requirements NA

Critical Factors NA

Containerisation NA

75

D4.2 - Architecture Specification Analysis and Design

5.1.4.8 Synthetic Data Validation Tool (SynthVal)

Main functional Requirements REQ-DATA-REL-M-104

Non functional Requirements REQ-DEV-USE-D-50, REQ-DATA-REL-M-105

Development Environment Python environment and various packages still not defined

Software Requirements Python environment and various packages still not defined

Hardware Requirements No particular HW requirements

Communications NA

Integration Requirements NA

Deployment Requirements NA

Security Requirements NA

Privacy Requirements NA

Critical Factors NA

Containerisation NA

5.1.4.9 Model Marketplace ML/AI/FL

Main functional Requirements REQ-PLAT-USE-M-03, REQ-PLAT-PRIV-M-08, REQ-PLAT-SEC-M-10, REQ-PLAT-
PERF-M-33, REQ-PLAT-DATA-O-34, REQ-PLAT-MAINT-D-35,REQ-DEV-REL-D-58

Non functional Requirements REQ-PLAT-MAINT-D-28, REQ-PLAT-SEC-M-07, REQ-PLAT-DATA-D-36, REQ-PLAT-
DATA-M-37, REQ-PLAT-PERF-M-38, REQ-DEV-COMP-D-59, REQ-DEV-COMP-D-60,
REQ-DEV-USE-D-50

Development Environment Python, .yml files for configuring docker and gitlab-ci, bash scripts, sql database, SFTP

Software Requirements SQL server, Python interpreter

Hardware Requirements Storage space

Communications API endpoints

Integration Requirements Docker containers

Deployment Requirements Docker engine

Security Requirements SSL

Privacy Requirements N/A

Critical Factors N/A

Containerisation Docker containers

76

D4.2 - Architecture Specification Analysis and Design

5.1.4.10 Legal/GDPR Compliance Check

Main functional Requirements REQ-PLAT-USE-M-03, REQ-PLAT-PRIV-M-08, REQ-PLAT-SEC-M-10, REQ-PLAT-
PERF-M-33, REQ-PLAT-DATA-O-34, REQ-PLAT-MAINT-D-35, REQ-DEV-REL-D-58,
REQ-DEV-COMP-D-59, REQ-DEV-COMP-D-60

Non functional Requirements REQ-PLAT-SEC-M-07, REQ-PLAT-DATA-D-36, REQ-PLAT-DATA-M-37, REQ-PLAT-
PERF-M-38, REQ-DEV-USE-D-50

Development Environment Node.JS or Next.JS, Javascript, Python

Software Requirements N/A

Hardware Requirements N/A

Communications ReST API communication

Integration Requirements Remote Server acting as Web application host

Deployment Requirements Web Server front-end and Back-end

Security Requirements HTTPS, Knowledge Base API, User Authentication through SECURED Dashboard

Privacy Requirements N/A

Critical Factors Not Identified

Containerisation Possible

5.1.4.11 Anonymisation Decision Support

Main functional Requirements REQ-PLAT-USE-M-03, REQ-PLAT-SEC-M-10, REQ-PLAT-PERF-M-33, REQ-PLAT-
DATA-O-34, REQ-PLAT-MAINT-D-35, REQ-DATA-PRIV-M-81, REQ-PLAT-PRIV-M-08,
REQ-DEV-REL-D-58

Non functional Requirements REQ-DATA-PRIV-D-82, REQ-PLAT-SEC-M-07, REQ-PLAT-DATA-D-36, REQ-PLAT-
DATA-M-37, REQ-PLAT-PERF-M-38, REQ-DEV-COMP-D-59, REQ-DEV-COMP-D-60,
REQ-DEV-USE-D-50

Development Environment Node.JS or Next.JS, Javascript, Python

Software Requirements N/A

Hardware Requirements N/A

Communications ReST API communication

Integration Requirements Remote Server acting as Web application host

Deployment Requirements Web Server front-end and Back-end

Security Requirements HTTPS, Knowledge Base API, User Authentication through SECURED Dashboard

Privacy Requirements N/A

Critical Factors Not Identified

Containerisation Possible

77

D4.2 - Architecture Specification Analysis and Design

5.1.5 Innohub Development Libraries

5.1.5.1 Anonymisation Software/Hardware Development Library

Main functional Requirements The library complies with all the (Functional and non Functional) Technical Requirements
of the Anonymisation Tool, the Anonymisation assessment tool, the SDG tool

Non functional Requirements REQ-DEV-USE-D-50

Development Environment C and Python

Software Requirements N/A

Hardware Requirements N/A

Communications TCP/TLS communication channels

Integration Requirements Provides common interface for all the anonymization services

Deployment Requirements N/A

Security Requirements N/A

Privacy Requirements N/A

Critical Factors Not Identified

Containerisation Possible

5.1.5.2 Secure Multiparty Computation Software/Hardware Development Library

Main functional Requirements REQ-DPROC-SEC-M-87

Non functional Requirements REQ-PLAT-DATA-M-47, REQ-DPROC-SEC-M-83, REQ-DPROC-SEC-O-84, REQ-
DPROC-PERF-D-86

Development Environment Python for both MPC components

Software Requirements MP-SPDZ requires glibc 2.1 and Python 3, so Linux 2014 or later or MacOS High Sierra

Hardware Requirements Typical PC configuration

Communications TCP/TLS communication channels

Integration Requirements Needs to interface with FL component for FL-MPC. Secrets Management might also be
necessary, for temporary storage of secret protocol values or persistent party identifiers.

Deployment Requirements Underlying libraries require addresses and port numbers of communicating protocol par-
ticipants

Security Requirements Library and related documentation need to be transmitted to users so point-to-point TLS
channels would be sufficient. Entity impersonation is a major threat here, e.g. one party
participating in a protocol claiming to be someone they are not.

Privacy Requirements Tooling need to provide encrypted channels and restrict access to plaintext data for par-
ticipating entities, so no additional privacy measures are foreseen.

Critical Factors Availability of MP-SPDZ library crucial: no competitor MPC library available. SW require-
ments (dependencies) might be different from FL layer, meaning that some participants
might have to be included from FL process: might cause issues with model accuracy etc.

Containerisation To be decided at a later development stage

78

D4.2 - Architecture Specification Analysis and Design

5.1.5.3 Homomorphic Encryption Software/Hardware Development Library

Main functional Requirements REQ-DPROC-SEC-M-87

Non functional Requirements REQ-PLAT-DATA-M-47, REQ-DPROC-SEC-M-83, REQ-DPROC-SEC-O-84, REQ-
DPROC-PERF-D-85, REQ-DPROC-PERF-D-86

Development Environment C++ and Python

Software Requirements OpenFHE requires g++ v9 or later/clang++ v10 or later. CONCRETE available via Docker
for most OSs.

Hardware Requirements For encryption/decryption: Typical PC hardware configuration. For HE evaluation: high
end server with at least 20 CPU cores, dedicated high end GPU with at least 32 GB RAM
is desirable .

Communications TCP/TLS Communication channel

Integration Requirements Secret Management for temporary storage of secret protocol values or persistent party
identifiers.

Deployment Requirements Underlying libraries require addresses and port numbers of communicating protocol par-
ticipants.

Security Requirements Entity authentication is necessary: participating parties must be certain of the identity of
their counterparties

Privacy Requirements N/A, provided by tools

Critical Factors Availability of libraries, speed of execution very dependent on hardware

Containerisation To be decided at a later development stage

5.1.5.4 Privacy Preserving Federated Learning Development Library

Main functional Requirements REQ-DATA-PRIV-M-81, REQ-DATA-PRIV-M-99

Non functional Requirements REQ-DATA-PRIV-M-43, REQ-DEV-USE-D-50, REQ-DATA-PRIV-M-100, REQ-DATA-
PRIV-M-101, REQ-DEV-USE-D-50

Development Environment Pytorch 2.3 and Python 3.10

Software Requirements Python libraries defined by requirements.txt (Python 3.10, Pytorch 2.3.1, Flower 2.0.1,
Numpy 1.26, Scipy 1.13, Scikit-learn 1.5, matplotlib 3.9, xgboost 2.1, seaborn 0.13, shap
0.46, pandas 2.2)

Hardware Requirements GPU with 32 GB RAM

Communications TCP/TLS communication channels

Integration Requirements Needs to interface with SMPC Library and service to use secure aggregation. Secrets
Management is also necessary to store pairwise secrets established for secure aggrega-
tion.

Deployment Requirements Pairwise communication of FL parties including the server are required to establish pair-
wise secrets used in secure aggregation. Network configuration is necessary (network
addresses of all parties must be shared and configured). All point-to-point communication
must be protected with TLS.

Security Requirements TLS, SMPC (secure aggregation)

Privacy Requirements TLS, SMPC (secure aggregation)

Critical Factors Not Identified

Containerisation To be decided at a later development stage

79

D4.2 - Architecture Specification Analysis and Design

5.2 Interconnections and Interfaces

5.2.1 SECURED Front End

Main Inputs Request Secure Modules

Input Data from Partner User (Developer)

Nature of Expected Input User input; Menu selection, free text, decision trees

Interfaces KB-API, Management DB, Innohub API, Dashboard

Triggered by User request

Main Outputs List of secure modules

Output Data to Partner List of secure relative modules/source code

Nature of Expected Output Module source code, JSON, CSV, images

Related Scenarios All related scenarios

Interfaces KB-API, Management DB, Innohub API, Dashboard

Triggered by Once internal checks are concluded, output is provided to all stakeholders

5.2.2 SECURED Back End

Main Inputs Synthetic/open data for the Data Ingestion Mechanism. Kafka messages for the commu-
nication module.

Input Data from Partner Developers and End-Users

Nature of Expected Input Serialized (JSON, XML, CSV) data in the form of Apache Kafka messages.

Interfaces All developed tools and Knowledge Base APIs

Triggered by User request, Automatic/rule-based pipelines

Main Outputs Kafka messages/ Logs for the communication module. Synthetic Data pointers for the
Knowledge Base

Output Data to Partner No actual data to be shared through Innohub

Nature of Expected Output Serialized Messages (JSON, CSV)

Related Scenarios All related scenarios

Interfaces All developed tools and Knowledge Base APIs

Triggered by User request, Automatic/rule-based pipelines

80

D4.2 - Architecture Specification Analysis and Design

5.2.3 Knowledge Base

Main Inputs Synthetic datasets, metadata for synthetic datasets, metadata for public datasets, ready-
to-use software tools, AI trained models, metadata for Secured services, metadata for
trained models

Input Data from Partner All partners

Nature of Expected Input JSON files, image files, docker files, CSV files, DICOM files, h5 files, pth files

Interfaces ReST API

Triggered by SECURED Tools and Services, SECURED Back End

Main Outputs outputs data, ML/DL Models, tools, containers and data in general from the SECURED
datalake, SECURED data inventory, Synthetic data cache, container registry, toolbox
repository, knowledge graph subcomponents

Output Data to Partner SECURED Tools and Services

Nature of Expected Output Relational databases, file system storage

Related Scenarios All related scenarios

Interfaces endpoints: /syntheticDataset/, /dataInventory/, /AIModels/, /containerRegistry/, /tool-
boxRepository/

Triggered by SECURED Back End

5.2.4 Innohub Services/Tools

5.2.4.1 Anonymizing Tool

Main Inputs Raw data to anonymise in csv, xlsx or txt format files

Input Data from Partner Unbiased data from Unbiasing tool is provided for anonymising

Nature of Expected Input Data such as Electronic Health Records (EHRs) and time-series data.

Interfaces An API is provided for accessing the services. A Graphical User Interface can be provided
for user interaction

Triggered by User through a user interface

Main Outputs Anonymised dataset and anonymisation process report in csv format and pdf format, re-
spectively

Output Data to Partner Anonymised data to Anonymisation Assesment tool

Nature of Expected Output Anonymised health data (csv) and report (pdf) of the anonymisation process to be evalu-
ated by the user.

Related Scenarios Expected participation in Use Case 2, 3 and 4

Interfaces API

Triggered by Orchestrator application (SECURED Back End)

81

D4.2 - Architecture Specification Analysis and Design

5.2.4.2 Anonymisation Assessment Tool

Main Inputs Anonymised data types and details, with data samples in csv, xlsx, image or txt format
files

Input Data from Partner For testing only: anonymised data from anonymisation tool is provided for anonymisation
assessment

Nature of Expected Input Parameters of anonymised health data (such as electronic health records (EHR) and time-
series data), with the possibility of providing small data samples. The actual data itself
should not be shared to ensure privacy.

Interfaces Web-based user interface. A limited number of tools (those developed as part of the
project, and potentially attacks for which the implementation is openly available) will be
integrated in the WP library.

Triggered by User through a user interface

Main Outputs The main output is a user-readable threat (attack) list, with user guidance. In addition,
specific tools (those integrated in the library) will output de-anonymisation results when
used against a user-provided dataset locally (no data to be uploaded on the web tool).

Output Data to Partner No direct output. However, the platform may provide useful insight into the improvement
of the anonymisation service

Nature of Expected Output Output displayed in web interface. Potentially, a PDF report may be extracted from the
page (feasibility to be assessed).

Related Scenarios We will focus on use cases 2, 3, and 4

Interfaces Web-based user interface.

Triggered by User uploads a dataset via the web interface

5.2.4.3 Synthetic Data Generator Service and Tool

Main Inputs Configuration parameters for the generator. If the model works with input data, we require
data in .dcm (images), pathological image native format and .csv (tabular, time series).

Input Data from Partner We expect interaction with Bias assessment

Nature of Expected Input DICOM, Histopathological image native format and CSV (and related)

Interfaces API and library

Triggered by A coordination application for the advanced services or user interface

Main Outputs Generated images in png, DICOM or pathological image format. Tabular/time series data
is expected to be in CSV.

Output Data to Partner Data/Requests to be obtained from Bias tools

Nature of Expected Output DICOM, Histopathological image native format and CSV (and related)

Related Scenarios Use Case 2 and 3

Interfaces API, library

Triggered by A coordination application for the advanced services or user interface

82

D4.2 - Architecture Specification Analysis and Design

5.2.4.4 Anonymised Data Transformation Toolset

Main Inputs Raw data to anonymise in csv, xlsx or txt format files

Input Data from Partner Use Case Partners and Open Call participants

Nature of Expected Input Anonymised and Unbiased datasets

Interfaces ReST API

Triggered by Users

Main Outputs Anonymised and Unbiased csv, xlsx or txt format datasets

Output Data to Partner User

Nature of Expected Output dataset in various popular data formats

Related Scenarios Related to Use Cases 2,3 and 4

Interfaces ReST API

Triggered by User

5.2.4.5 Bias Assessment Service and Tool

Main Inputs Dataset and sensitive attribute (one or several) of interest.

Input Data from Partner Sensitive attribute of interest from the use case provider. The dataset from UC provider in
case of raw data, BSC (T2.3) for the synthetic data, T2.1 (ATOS) for anonymised dataset

Nature of Expected Input dataset dependent.

Interfaces ReST API

Triggered by A request for bias assessment by SECURED Back End (for service) or by the user (for
tool)

Main Outputs List of metrics

Output Data to Partner Entity that made the request (data provider)

Nature of Expected Output Raw text, CSV of JSON (to be further refined in later development stage)

Related Scenarios Use Case 3 and 4

Interfaces ReST API

Triggered by SECURED Back End (for service) or by the user (for tool)

83

D4.2 - Architecture Specification Analysis and Design

5.2.4.6 Unbiasing Service and Tool

Main Inputs dataset, the model (architecture, weights, pre-processing etc), sensitive attribute descrip-
tion

Input Data from Partner the training dataset, the whole training procedure (pre-processing, augmentation, training,
model architecture, weights, etc)

Nature of Expected Input Files in a folder architecture. To be defined for the training procedure (code)

Interfaces ReST API

Triggered by model developer user (for tool) or SECURED Back End (for service)

Main Outputs Depending on the scenario, either a training procedure including bias mitigation or the
weights of the model trained with a bias reduction approach.

Output Data to Partner

Nature of Expected Output To be defined in later development stage

Related Scenarios Use Case 3 and 4

Interfaces ReST API

Triggered by SECURED Back End (for service) or the model developer user (for tool)

5.2.4.7 Formal Verification

Main Inputs Updates about components of the framework; Updates about new threats to consider.

Input Data from Partner Data/information related to components and dataflows

Nature of Expected Input CSV files

Interfaces NA

Triggered by NA

Main Outputs Feedback about the consistency of the framework with respect to cybersecurity aspects.

Output Data to Partner NA

Nature of Expected Output Textual output

Related Scenarios NA

Interfaces NA

Triggered by NA

84

D4.2 - Architecture Specification Analysis and Design

5.2.4.8 Synthetic Data Validation Tool (SynthVal)

Main Inputs Real data and synthetic data produced within the Synthetic Data Generator architectural
block

Input Data from Partner NA

Nature of Expected Input Data such as images and time series

Interfaces NA

Triggered by NA

Main Outputs Information regarding the similarity between real and synthetic data

Output Data to Partner NA

Nature of Expected Output Textual Output

Related Scenarios NA

Interfaces NA

Triggered by NA

5.2.4.9 Model Marketplace ML/AI/FL

Main Inputs Trained AI models

Input Data from Partner Model weights files

Nature of Expected Input Raw files, JSON

Interfaces ReST API

Triggered by User input

Main Outputs Requested model, JSON formatted information

Output Data to Partner ReST API

Nature of Expected Output .pth or .h5 files, JSON file

Related Scenarios All relevant scenarios

Interfaces ReST API

Triggered by User request, Automatic/rule-based pipelines (SECURED Back End)

85

D4.2 - Architecture Specification Analysis and Design

5.2.4.10 Legal/GDPR Compliance Check

Main Inputs User input on datasets and AI models specification as well as possible usage (country of
origin, country of usage etc) provided through a Dashboard related front-end

Input Data from Partner User

Nature of Expected Input JSON format

Interfaces ReST API (to be finalized in a later development stage)

Triggered by SECURED Dashboard and user

Main Outputs Series of Legal Guidelines on how to comply with EU and national regulations on pri-
vacy/anonymity

Output Data to Partner SECURED Dashboard and User

Nature of Expected Output JSON format

Related Scenarios All relevant scenarios

Interfaces ReST API

Triggered by SECURED Dashboard and User

5.2.4.11 Anonymisation Decision Support

Main Inputs User configuration input provided through a Dashboard related front-end

Input Data from Partner User

Nature of Expected Input JSON format

Interfaces ReST API (to be finalized in a later development stage)

Triggered by SECURED Dashboard and user

Main Outputs Series of Technical Guidelines on how to configure the Anonymisation toolset, Unbiasing
and Synthetic Data Generator tools or services

Output Data to Partner SECURED Dashboard and User

Nature of Expected Output JSON format

Related Scenarios All relevant scenarios

Interfaces ReST API

Triggered by SECURED Dashboard and User

86

D4.2 - Architecture Specification Analysis and Design

5.2.5 Innohub Development Libraries

5.2.5.1 Anonymisation Software/Hardware Development Library

Main Inputs Library is offering common API to the Anonymisation functions and used dataset to be
anonymised as inputs

Input Data from Partner User of the library

Nature of Expected Input Specific API calls, data to be anonymised in csv, txt, png, dicom or raw format

Interfaces Dedicated API

Triggered by User

Main Outputs anonymised data and relevant metadata

Output Data to Partner User

Nature of Expected Output Same as the input

Related Scenarios All relevant scenario

Interfaces Dedicated API

Triggered by User

5.2.5.2 Secure Multiparty Computation Software/Hardware Development Library

Main Inputs For FL component, this component acts as a layer on top of FL component to provide se-
cure aggregation functionality. For encrypted training component, the input is the training
data.

Input Data from Partner FL-MPC component requires stable interface with FL component; encrypted training com-
ponent requires knowledge of the possible ranges of (encoding of) all data fields in training
data plus model output field.

Nature of Expected Input Varies, depending on usage: the users will use our documentation to configure the library
and provide input as instructed.

Interfaces API

Triggered by FL-MPC triggered as an option in FL component, (but unclear how this will work: not all
FL approaches can support SecAgg and user needs to choose which aggregation type
to be used, depending on number of parties and threat model). Encrypted training is a
standalone component.

Main Outputs FL-MPC gives an aggregated model back to FL component; encrypted training gives a
(tree-based) ML model. Format TBC for both.

Output Data to Partner Varies, depending on usage: FL-MPC will feed back into FL component so would be ML
model weights at each round, encrypted training will provide a ML model.

Nature of Expected Output Varies depending on usage, see above and below. Data formats for input and output must
be agreed by protocol participants in encrypted training processes.

Related Scenarios The output of this component is a ML model or model weights so it will either go into model
marketplace or would be stored on an entity’s system for inference access. Second option
also has potential for adding encryption layer, linking with HE library tooling (TC3.4a)

Interfaces FL-MPC connected to FL component

Triggered by User

87

D4.2 - Architecture Specification Analysis and Design

5.2.5.3 Homomorphic Encryption Software/Hardware Development Library

Main Inputs Data to be encrypted/decrypted, function to be evaluated

Input Data from Partner For ML inference, data input is the inference query (by the querying party) and the model
(by the model owner). For scenarios like UC1, input would be image data for regridding
process. For UC2 and UC4, the input to encrypted inference usage is the ML model

Nature of Expected Input Entirely depends on the usage, and would be different for two parties in the same workflow,
e.g. in encrypted ML inference one party provides the inference input and another provides
the ML model

Interfaces API

Triggered by Request from the model owner/model trainer

Main Outputs For ML inference, output would be the decrypted query answer

Output Data to Partner

Nature of Expected Output Entirely depends on the usage, and as above outputs may be different for two participants
In the same protocol.

Related Scenarios Anything that requires computation to be made on an encrypted value.

Interfaces API

Triggered by USer

5.2.5.4 Privacy Preserving Federated Learning Development Library

Main Inputs (1) Architecture and type of the machine learning model to be trained. (2) Local training
data that is not shared but used to compute gradients (model update) to be shared. (3)
Hyper-parameters of the training. In particular, (1) Model architecture saved by torch.save
as a serialized python object. (2) Pre-processed training and validation data saved as
numpy arrays by numpy.save(z). The features and ground-truth labels are saved in sepa-
rate numpy arrays. The validation and training data must have the same format. (3) The
hyper-parameters of the training (batch-size, optimizer, loss function, learning rate, etc.)

Input Data from Partner Expected input from TC3.1 (FL-MPC); secure aggregation and potentially encrypted infer-
ence, potentially from TC3.3 (unbiased tools) in case such tools need to be integrated into
FL framework (alternatively the user can manually build a loss function the incorporates
bias mitigation), TC2.3 (synthetic data generation) if the model is provided by an innohub
service or from knowledgebase, TC2.1 (Anonymised training data)

Nature of Expected Input Numpy arrays, serialized python objects

Interfaces API

Triggered by Request from the model owner/ model trainer

Main Outputs Trained machine learning model (model parameters), evaluation the trained model and
the training process

Output Data to Partner UC2, UC4

Nature of Expected Output Trained machine learning model (model parameters) serialized python objects by
torch.save, statistics about training procedures (loss curves, evaluation metric values)

Related Scenarios UC2 (telemetry monitoring) and UC4 (genomics)

Interfaces API

Triggered by A coordination application for the advanced services or user interface

88

D4.2 - Architecture Specification Analysis and Design

6 Conclusions

This document concluded the work on Task 4.1 by producing this Deliverable on the Architecture Specifications,
Analysis and Design. This Deliverable showcases the overall SECURED architecture with all its domains,
individual services, components, tools, libraries and knowledge bases, as well as their interactions initially in a
high-level overview by updating and elaborating on the architecture defined in D4.1. The overall architecture was
followed with an in-depth description and analysis of every the domains, individual services, components, tools,
libraries and knowledge bases, its function, interaction with every connected component of the architecture and
the respective output.

Having the SECURED architecture defined in such a fine-grained detail, allowed us to provide a user-centric
view of the SECURED solution by adopting the User Journey paradigm. We set clear objectives, identified
the key users of the solution and their actual goals, and showcased how each one of them would use the
SECURED platform and what interactions these users have between them and the SECURED solution. Using
this approach we identified four distinct user types each one with a different end goal of using the SECURED
architecture and showcased how each one will use the various architectural components in order to achieve
their goals.

Finally, we presented the technical requirements, containing all the necessary information, such as functional
and nonfunctional requirements, software, hardware, integration, deployment security and privacy require-
ments. The technical requirements were followed by the interface and interconnections of all domains, ser-
vices and tools defining information, such as inputs and outputs, integration, deployment security and privacy
requirements.

In conclusion this Deliverable showcased the final SECURED Reference Architecture providing the necessary
blueprint, along with technical requirements and details for the current and upcoming integration activities and
paving the road towards the expected SECURED Innohub solution for the rest of the WPs to follow towards the
final results.

89

D4.2 - Architecture Specification Analysis and Design

A Appendix: Overview of Identified Technical Requirements

In D4.1 [1] the consortium partners have provided an extensive list of technical requirements that optimally
fit the preliminary SECURED architecture and the components. Given that in M18 the activities of T4.1 have
been completed fully and have served their full purpose and that the activities of the tasks WP2 and WP3 have
progressed significantly, some of the technical requirements described in D4.1 can be amended to better fit the
final SECURED Reference Architecture. In this subsection, we provide the D4.1 technical requirements that
are amended or merged into more comprehensive and meaningful requirements. We also provide Technical
Requirements that are out-of-scope for the SECURED Reference Architecture since they refer to other aspects
of SECURED, e.g., the Open Call. For each such merge/amendment, we provide a relevant justification.

A.1 Altered or Merged Technical Requirements

A.1.1 Merging A

A.1.1.1 Original D4.1 Technical Requirements

REQ-PLAT-REL-M-04 Short Name: Application/Service Private deployment support

Description Downloaded Application/Service binaries/artifacts, should be able to be easily instan-
tiated in Private Cloud Environments (K8s clusters) using standardized (K8s) soft-
ware/tools

Priority Mandatory Type Functional CUR 13 - 15, 30, 31

REQ-PLAT-REL-M-05 Short Name: Application/Service Public deployment support

Description Downloaded Application/Service binaries/artifacts, should be able to be easily instan-
tiated in Public Cloud Environments (K8s clusters) using standardized (K8s) soft-
ware/tools

Priority Mandatory Type Functional CUR 13 - 15, 30, 31

A.1.1.2 Merged Technical requirement

REQ-PLAT-REL-M-04_05 Short Name: Application/Service Deployment Support

Description Downloaded Application/Service binaries/artifacts, should be able to be easily in-
stantiated in Public or Private Cloud Environments

Priority Mandatory Type Functional CUR 13 - 15, 30, 31
Merging Justification Both REQ-PLAT-REL-M-04 and REQ-PLAT-REL-M-05 refer to the same concept

of cloud service/Application deployment so the could be addressed by one require-
ment. The original requirements restrict the developer on specific type of tools (e.g
K8s) that may be mandatory for extremely complex systems but not for systems of
like SECURED. To allow the flexibility to use a broader range of tools for instan-
tiating Application/Service binaries/artifacts is is preferable that the type of tools
used for matching the requirements be decided by the SECURED project devel-
opers/integrators.

90

D4.2 - Architecture Specification Analysis and Design

A.1.2 Merging B

A.1.2.1 Original D4.1 Technical Requirements

REQ-PLAT-SEC-M-18 Short Name: Secrets Management

Description The Vault must be able to Securely store and tightly control access to tokens, pass-
words, certificates, API keys, and other secrets. In addition, the Vault must also
support K8s-related secret management (i.e., KV Secrets Engine, Database Cre-
dentials, Kubernetes Secrets)

Priority Mandatory Type Functional CUR 10, 12, 13 - 18, 30, 32

REQ-PLAT-SEC-M-19 Short Name: Key Management

Description The Vault must support the creation and control of the encryption keys used for all
types of data encryption (data at rest/in transit).

Priority Mandatory Type Functional CUR 10, 30, 32

REQ-PLAT-SEC-M-20 Short Name: Certificate Management

Description The Vault must support the provisioning, management, and deployment of public
and private Transport Layer Security/Secure Sockets Layer (TLS/SSL) certificates
which could be used to secure external/internal connected resources.

Priority Mandatory Type Functional CUR 10, 30, 32

A.1.2.2 Merged Technical requirement

REQ-PLAT-SEC-M-18_19_20 Short Name: Security Management

Description SECURED mus be able to provide structures that will handle the overall secret
management of the system. This may include the generation and manage-
ment of cryptography keys. the generation and management of digital cer-
tificates for use in Transport Layer Security/Secure Sockets Layer (TLS/SSL)
sessions as well as any access control tokens that are needed in the overall
management of the SECURED Innohub

Priority Mandatory Type Functional CUR 10, 12, 13 - 18,
30, 32

Merging Justification REQ-PLAT-SEC-M-18, REQ-PLAT-SEC-M-19 and REQ-PLAT-SEC-M-20 re-
fer different angles of the same overall concept for managing security related
secrets within the SECURED platform. The requirements seem to point to
specific commercial Vault type of tools that are necessary in order to han-
dle secrets for highly complex systems. Given the decentralized nature of
loosely interconnected services and downloadable tools in the SECURED ar-
chitecture as well as given the small number of tools and services offered by
the Innohub, such complex secret management systems may not be neces-
sary. In order to allow the developers/integrators to explore a broad range
of options on security management including open source solutions, the 3
requirements are merged into one that describe the same requirement goals
but without profiling specific tools to achieve them.

91

D4.2 - Architecture Specification Analysis and Design

A.1.3 Merging C

A.1.3.1 Original D4.1 Technical Requirements

REQ-DEV-COMP-M-61 Short Name: Extension - SECURED Infrastructure interaction

Description New services shall be able to interact with the SECURED Infrastructure though the
opensource SECURED REST API that will be specified in the project.

Priority Mandatory Type Functional CUR 30 - 40

REQ-DEV-COMP-M-63 Short Name: User authorization to experimentation/development data

Description SECURED Infrastructure should ensure that third party developers/experimenters
are authorized to perform tests isolated, fully independent, without the ability to
access other experimenter’s data(sets).

Priority Mandatory Type Functional CUR 30 - 40

A.1.3.2 Merged Technical requirement

REQ-DEV-COMP-M-61_63 Short Name: Extension - SECURED Infrastructure Interactions and data exper-
imentation

Description New services shall be able to interact with the SECURED Infrastructure though
the various open source SECURED REST APIs. SECURED Infrastructure will
be able to offer isolated fully independent instances to third party develop-
ers/experimenters for SECURED service experimentation

Priority Mandatory Type Functional CUR 30 - 40
Merging Justification The REQ-DEV-COMP-M-61 and REQ-DEV-COMP-M-63 requirements refer to

open call external participants interacting with the SECURED platform. As ex-
pected such users and their developed services through the open-call must be
able to access SECURED in a secure manner (isolated from other services) using
the platform’s various REST APIs. The same authentication mechanism will be
applied to users that are interacting with the platform and the principles for service
isolation is applied also to the users. Thus, we consider that the two requirements
are in the actual system handled by the same conceptual structures and can be
merged into one. Note that SECURED does not store anonymized datasets but
rather registers their presence of the data owner’s premises. The only datasets
that are handled through SECURED are anonymized synthetically generated data
and therefore the experimentation is restricted to those.

92

D4.2 - Architecture Specification Analysis and Design

A.1.4 Updated/Revised Requirement

REQ-DEV-COMP-D-67 Short Name: Extension – Behavior Monitoring

Description New services should be authorized to access exposed APIs based on continuous
monitoring (behavior, traffic patterns, queries, etc) provided by the SECURED In-
frastructure. Monitored access could be utilized to ensure appropriate behavior or
to detect potentially malicious actions (i.e. DDoS-type attacks taking advantage of
exposed APIs)

Priority Desirable Type Non-Functional CUR 30, 31, 36
Update Justification The requirement refers to open call external participants interacting with the SE-

CURED platform and performing malicious activities. While such a requirement is
desirable it is not mandatory for the TRL level of the SECURED project/ To intro-
duce malicious behavior monitoring mechanisms on top of the SECURED platform
may need the introduction of new tools that are not foreseen in the DoA. Therefore,
the Priority of this requirement has been changed from Mandatory to Desirable.

A.1.5 Out of Scope Requirements for the SECURED Architecture

The SECURED Reference Architecture include a series of components for which individually in Section 5 we
provide an association with the D4.1 identified Technical Requirements (with the updates provided in the previ-
ous subsections of this appendix). However, in D4.1 we provide also the needed requirements of the external
tools and services developed during the SECURED open call in order to comply with the SECURED Inno-
hub. Those requirements while important for the open call process cannot directly be linked to the SECURED
Reference Architecture components (since they focus on the external open-call components). Nevertheless,
regardless of being out-of-scope for inclusion in Section 5, we report them for the sake of completeness in this
subsection since they must be considered by the open-call participants. Note that all these requirements are
documenting needs for the open call services and tools that are supported (based on other Technical require-
ments) by the SECURED platform.

REQ-DEV-COMP-M-62 Short Name: Extension - Remote Operational Control

Description New services should provide means for remote operational control from the corre-
sponding SECURED Infrastructure entity (Controller / CLI / Admin UI)

Priority Mandatory Type Functional CUR 30 - 40

REQ-DEV-COMP-M-64 Short Name: Extension – SECURED Infrastructure secure communication

Description The connectivity link/communication channel between all entities/services shall be
secure, potentially with end-to-end encryption.

Priority Mandatory Type Functional CUR 10 - 12, 30 - 40

REQ-DEV-COMP-M-65 Short Name: Extension - User Authentication

Description New services should support various levels of authorization (i.e. remote user /
centralized user / administrator) and identification

Priority Mandatory Type Functional CUR 16, 30 - 40

REQ-DEV-COMP-M-66 Short Name: QoS Alerting Mechanism

93

D4.2 - Architecture Specification Analysis and Design

Description New services should generate alerts if expected/predefined QoS cannot be
reached, in order to trigger adaptation/improvement mechanisms on the SE-
CURED Infrastructure side. The QoS should be the output of monitoring
values/performance metrics such as latency, throughput, uptime as well as
application-specific KPIs

Priority Mandatory Type Non-Functional CUR 25, 33, 39, 40

A.2 Final D4.1/D4.2 Technical Requirements

Requirement Short description Priority Type

REQ-PLAT-PORT-M-01 Integration of experimenter’s complimentary
components

Mandatory Functional

REQ-PLAT-USE-D-02 Application/Service deployment at the Edge Desirable Functional

REQ-PLAT-USE-M-03 Application/Service deployment infrastructure
support

Mandatory Functional

REQ-PLAT-REL-M-04_05 Application/Service deployment support Mandatory Functional

REQ-PLAT-AVL-D-06 Cloud native elasticity (scale out/scale in) sup-
port

Desirable Non-
Functional

REQ-PLAT-SEC-M-07 Security, inAccess support Mandatory Functional

REQ-PLAT-SEC-M-10 Strong User Authentication support Mandatory Functional

REQ-PLAT-SEC-D-11 Single-Sign On / Out Desirable Functional

REQ-PLAT-SEC-M-12 User Federation Support Mandatory Functional

REQ-PLAT-SEC-M-13 Standard Protocol and Identity Brokering Support Mandatory Functional

REQ-PLAT-SEC-D-14 Administration Console Desirable Functional

REQ-PLAT-SEC-M-15 RBAC Authorization Service and Customized
Policy Support

Mandatory Non-
Functional

REQ-PLAT-SEC-P-16 Account Management Console / Environment
(OPTIONAL)

Possible Non-
Functional

REQ-PLAT-SEC-P-17 2(M)Factor Authentication Support (OPTIONAL) Possible Functional

REQ-PLAT-SEC-M-
18_19_20

Security Management Mandatory Functional

REQ-PLAT-COMP-M-21 Source-agnostic data ingestion Mandatory Functional

REQ-PLAT-MAINT-M-22 Metrics Handling support Mandatory Functional

REQ-PLAT-MAINT-D-23 Log Ingestion support Desirable Functional

REQ-PLAT-MAINT-D-24 Custom Query Support Desirable Functional

REQ-PLAT-MAINT-D-25 Traces Handling support Desirable Functional

REQ-PLAT-MAINT-M-26 Centralized Logging Repository query environ-
ment / interface

Mandatory Functional

94

D4.2 - Architecture Specification Analysis and Design

REQ-PLAT-MAINT-M-27 Metric Alerts support Mandatory Functional

REQ-PLAT-MAINT-D-28 Activity Log Alert support Desirable Functional

REQ-PLAT-MAINT-D-29 Customized Alert Rules support Desirable Functional

REQ-PLAT-MAINT-M-30 Dashboards and Tables Mandatory Functional

REQ-PLAT-MAINT-M-31 Log Reports Mandatory Functional

REQ-PLAT-MAINT-M-32 Analytics Graphs Mandatory Functional

REQ-PLAT-PERF-M-33 Accelerated Data Retrieval Mechanism Mandatory Functional

REQ-PLAT-DATA-O-34 Common Data Integration Pattern Functionality
(ETL/ELT)

Optional Functional

REQ-PLAT-MAINT-D-35 Data Pipeline Definition and Execution Desirable Functional

REQ-PLAT-DATA-D-36 Dataset Identification and Handling Desirable Non-
Functional

REQ-PLAT-DATA-M-37 Data Flow Mapping Mandatory Non-
Functional

REQ-PLAT-PERF-M-38 Integration Runtime Mandatory Non-
Functional

REQ-DATA-PRIV-M-39 Data Masking Support Mandatory Non-
Functional

REQ-DATA-PRIV-M-40 Pseudoanonymization Support Mandatory Non-
Functional

REQ-DATA-PRIV-M-41 Generalization Support Mandatory Non-
Functional

REQ-DATA-PRIV-M-42 Data Swapping Support Mandatory Non-
Functional

REQ-DATA-PRIV-M-43 Data Pertubation Support Mandatory Non-
Functional

REQ-PLAT-DATA-M-44 Compatibility with the Hadoop Distributed File
System (HDFS)

Mandatory Functional

REQ-PLAT-DATA-M-45 Compatibility with standardized Analytics En-
gines via a dedicated Query Layer

Mandatory Non-
Functional

REQ-PLAT-DATA-M-46 Data Lake solution must be Data Source Agnos-
tic

Mandatory Non-
Functional

REQ-PLAT-DATA-M-47 Native Data Type Support Mandatory Non-
Functional

REQ-PLAT-DATA-D-48 Data Lake REST API Desirable Functional

REQ-PLAT-DATA-M-49 Layered and Isolated Architecture Mandatory Non-
Functional

REQ-DEV-USE-D-50 Software Documentation Desirable Other

REQ-DEV-USE-M-51 Main Codebase Repository Requirements Mandatory Other

95

D4.2 - Architecture Specification Analysis and Design

REQ-DEV-USE-D-52 Verification tools virtualization Desirable Non-
Functional

REQ-DEV-USE-D-53 Exclusive verification tests Desirable Non-
Functional

REQ-DEV-USE-D-54 Open-sourced validation tools Desirable Non-
Functional

REQ-DEV-USE-D-55 Validation framework containerization Desirable Non-
Functional

REQ-DEV-AVL-M-56 Cloud-native compatibility Mandatory Non-
Functional

REQ-PLAT-USE-M-57 SECURED Toolbox / Software Repository Mandatory Functional

REQ-DEV-REL-D-58 SECURED ReST API for facilitating component
interconnection

Desirable Functional

REQ-DEV-COMP-D-59 SECURED API Security Practices Desirable Non-
Functional

REQ-DEV-USE-D-60 SECURED API Documentation Desirable Other

REQ-DEV-COMP-M-61_63 Extension - SECURED Infrastructure Interac-
tions and data experimentation

Mandatory Functional

REQ-DEV-COMP-D-67 Extension – Behavior Monitoring Desirable Non-
Functional

REQ-DEV-COMP-M-68 Testbed-Experimenter collaboration Mandatory Functional

REQ-DATA-PRIV-M-69 Anonymization service and tool for different, het-
erogeneous Health data types

Mandatory Functional

REQ-DATA-PRIV-D-70 Anonymization of high data volumes Desired Non Func-
tional

REQ-DATA-PRIV-D-71 Offered Anonymization to withstand de-
anonymization attacks

Desired Functional

REQ-DATA-MAINT-M-72 Provide report/guarantee of anonymization pro-
cess

Mandatory Functional

REQ-DATA-SEC-M-73 Assess anonymized dataset for Timeseries
Health Data

Mandatory Functional

REQ-DATA-SEC-M-74 Assess anonymized dataset for Image Health
Data

Mandatory Functional

REQ-DATA-SEC-M-75 Assess anonymized dataset for Electronic Health
Record Data

Mandatory Functional

REQ-DATA-SEC-O-76 Provide broad-scope de-anonymization tech-
niques

Optional Functional

REQ-DATA-SEC-M-77 Provide report of Anonymization assessment Mandatory Functional

REQ-SHW-PERF-M-78 Access to HPC hardware for efficient synthesis
(several CPUs, GPUs,...)

Mandatory Non-
Functional

96

D4.2 - Architecture Specification Analysis and Design

REQ-DATA-DATA-M-79 Generate data for different data types and modal-
ities

Mandatory Functional

REQ-DATA-DATA-D-80 Data novelty evaluation Desirable Functional

REQ-DATA-PRIV-M-81 Privacy risk and data utility trade-off mechanisms
for different health data types.

Mandatory Functional

REQ-DATA-PRIV-D-82 User friendly anonymisation decision support
and anonymization tools

Desirable Non-
Functional

REQ-DPROC-SEC-M-83 Seamless integration of SotA open-source
SMPC/HE libraries.)

Mandatory Non-
Functional

REQ-DPROC-SEC-O-84 Cost Estimator for MPC/HE protocols. Optional Non-
Functional

REQ-DPROC-PERF-D-85 Circuit optimizer for hardware acceleration of HE. Desirable Non-
Functional

REQ-DPROC-PERF-D-86 SMPC or HE solutions very fast response time Desirable Non-
Functional

REQ-DPROC-SEC-M-87 Customized, adaptable SMPC Transformation
process

Mandatory Functional

REQ-DATA-REL-M-88 Provide accurate bias score for a given dataset. Mandatory Functional

REQ-DATA-REL-M-89 Detection of Bias in Timeseries Health Data. Mandatory Functional

REQ-DATA-REL-M-90 Detection of Bias in Image Health Data Mandatory Functional

REQ-DATA-REL-M-91 Detection of Bias in Electronic Health Record
Data.

Mandatory Functional

REQ-DATA-REL-M-92 Detection of Bias in Anonymized Datasets. Mandatory Functional

REQ-DATA-PRIV-M-93 Provide analytic bias assessment reports. Mandatory Functional

REQ-DATA-PRIV-M-94 Unbiasing of Timeseries Health Data. Mandatory Functional

REQ-DATA-PRIV-M-95 Unbiasing of Image Health Data. Mandatory Functional

REQ-DATA-PRIV-M-96 Unbiasing of Electronic Health Record Data Mandatory Functional

REQ-DATA-PRIV-M-97 Unbiasing of Anonymized Datasets Mandatory Functional

REQ-DATA-PRIV-M-98 Provide report/guarantee of the Unbiasing pro-
cess

Mandatory Functional

97

D4.2 - Architecture Specification Analysis and Design

B Appendix: New Technical Requirements

REQ-DATA-PRIV-M-99 Short Name: Privacy-preserving Distributed Learning Framework for Health
Data

Description Federated Learning of Machine Learning Models for Times-series and EHR & Ge-
nomic Health Data

Priority Mandatory Type Functional

REQ-DATA-PRIV-M-100 Short Name: Privacy Assessment of Federated Learning

Description Measuring the unintended information leakage about the training data through Fed-
erated Learning including model updates and the trained model.

Priority Mandatory Type Functional

REQ-DATA-PRIV-M-101 Short Name: Contribution Scoring in Privacy-Preserving Federated Learning

Description Measuring the contribution of the model updates of the participating clients in Fed-
erated Learning (e.g., to boost accuracy).

Priority Mandatory Type Non-Functional

REQ-PLAT-SEC-M-102 Short Name: Provide automated reasoning capabilities for verification and
threat identification.

Description In the context of SECURED the platform tools and services should be verifiable
in a measurable manner and relevant reasoning on the achieved metrics must be
provided with out user involvement in the overall process

Priority Mandatory Type Functional

REQ-PLAT-REL-M-103 Short Name: Maintain high reliability and accuracy in consistency checking and
threat detection.

Description The verification metrics must be reasonably reliable and accurate therefore reflect-
ing the real status of the verified system/component

Priority Mandatory Type Non-Functional

REQ-DATA-REL-M-104 Short Name: Provide validation of synthetic data generated

Description Synthetically Generated Data must verified that they reflect real health related con-
ditions and that closely match real data

Priority Mandatory Type Functional

REQ-DATA-REL-M-105 Short Name: Maintain reliability and accuracy in validating the data

Description The similarity between real and synthetic data must be reasonably reliable and
accurate therefore reflecting the real status of the synthetically generated datasets

Priority Mandatory Type Non-Functional

98

D4.2 - Architecture Specification Analysis and Design

References

[1] SECURED project: D4.1-State of the Art and initial technical requirements. Fournaris, Apostolos Editor.
2023.

[2] M. B. Jones, J. Bradley, and N. Sakimura, “JSON Web Token (JWT),” RFC 7519, May 2015. [Online].
Available: https://www.rfc-editor.org/info/rfc7519

[3] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A practical owl-dl reasoner,” Web Semant.,
vol. 5, no. 2, p. 51–53, jun 2007. [Online]. Available: https://doi.org/10.1016/j.websem.2007.03.004

[4] R. D. Shearer, B. Motik, and I. Horrocks, “Hermit: A highly-efficient owl reasoner.” in Owled, vol. 432, 2008,
p. 91.

[5] SECURED project: D1.2-GDPR and Ethics Project Guidelines, Spajić, Daniela Editor. 2023.

[6] SECURED project: D2.5-Legal and ethical framework and analysis, Spajić, Daniela Editor. 2024.

[7] SECURED project: D3.1-Interim report on Scalable Secure Multiparty Computation, Federated Learning
and Unbiased AI techniques and tools. Aszalos, Albert Editor. 2024.

[8] SECURED project: D2.1-Interim report on Data anonymization, de-anonymization and Synthetic data
generation techniques, tools and services, Palmieri, Paolo Editor. 2024.

[9] D. J. Beutel, T. Topal, A. Mathur, X. Qiu, J. Fernandez-Marques, Y. Gao, L. Sani, K. H. Li, T. Parcol-
let, P. P. B. de Gusmão et al., “Flower: A friendly federated learning research framework,” arXiv preprint
arXiv:2007.14390, 2020.

[10] A. Følstad and K. Kvale, “Customer journeys: a systematic literature review,” Journal of Service Theory
and Practice, 2018.

[11] J. Rudkowski, C. Heney, H. Yu, S. Sedlezky, and F. Gunn, “Here today, gone tomorrow? mapping and
modeling the pop-up retail customer journey,” Journal of Retailing and Consumer Services, vol. 54, p.
101698, 2020.

[12] A.-M. Kranzbühler, M. H. Kleijnen, and P. W. Verlegh, “Outsourcing the pain, keeping the pleasure: effects
of outsourced touchpoints in the customer journey,” Journal of the Academy of Marketing Science, vol. 47,
pp. 308–327, 2019.

[13] B. Bosio, K. Rainer, and M. Stickdorn, “Customer experience research with mobile ethnography: A case
study of the alpine destination serfaus-fiss-ladis,” in Qualitative consumer research. Emerald Publishing
Limited, 2017, vol. 14, pp. 111–137.

[14] C. Meyer, A. Schwager et al., “Understanding customer experience,” Harvard business review, vol. 85,
no. 2, p. 116, 2007.

[15] M. Ieva and C. Ziliani, “The role of customer experience touchpoints in driving loyalty intentions in services,”
The TQM Journal, 2018.

[16] C. M. Voorhees, P. W. Fombelle, Y. Gregoire, S. Bone, A. Gustafsson, R. Sousa, and T. Walkowiak,
“Service encounters, experiences and the customer journey: Defining the field and a call to expand our
lens,” Journal of Business Research, vol. 79, pp. 269–280, 2017.

[17] F. Ponsignon, F. Durrieu, and T. Bouzdine-Chameeva, “Customer experience design: a case study in the
cultural sector,” Journal of Service Management, vol. 28, no. 4, pp. 763–787, 2017.

[18] A. Pantouvakis and A. Gerou, “The theoretical and practical evolution of customer journey and its signifi-
cance in services sustainability,” Sustainability, vol. 14, no. 15, p. 9610, 2022.

99

https://www.rfc-editor.org/info/rfc7519
https://doi.org/10.1016/j.websem.2007.03.004

	Executive Summary
	Related Documents

	Introduction
	Purpose and Scope of the Document
	Contribution to WP4 and Relation to Work Packages, Deliverables, and Activities
	Structure of the Document

	SECURED Reference Architecture
	Overall Architecture
	SECURED Front End
	SECURED Hub Dashboard
	User Authentication & Authorization
	Logging and Monitoring/Alerting Mechanisms
	Secret Management
	Management DB

	SECURED Back End
	Data Ingestion Mechanism
	SECURED Orchestrator
	SECURED communication module
	Formal Verification

	Knowledge Base
	SECURE Data Lake
	Container Registry
	Toolbox Repository
	SECURED Data Inventory
	Legal Documents Repository
	Privacy Preserving AI-trained models
	Synthetic Data Cache
	UML - Sequence diagrams

	Innohub Services
	Platform Services
	Privacy Preserving Services and Innohub Tools
	Innohub Development Libraries

	SECURED Processes and User Interactions
	User, Roles and Interactions Methodology
	User Types
	End User
	Model Developers
	Privacy Preserving Application Developers
	Data Developer

	User Journeys
	Common Processes-Stages
	End User UJ
	Model Developer UJ
	Privacy Preserving Application Developers
	Data Developer

	Technical Specifications and Interconnections of SECURED Architecture Components
	Technical Specifications
	SECURED Front End
	SECURED Back End
	Knowledge Base
	Innohub Services/Tools
	Innohub Development Libraries

	Interconnections and Interfaces
	SECURED Front End
	SECURED Back End
	Knowledge Base
	Innohub Services/Tools
	Innohub Development Libraries

	Conclusions
	Appendix: Overview of Identified Technical Requirements
	Altered or Merged Technical Requirements
	 Merging A
	 Merging B
	 Merging C
	Updated/Revised Requirement
	Out of Scope Requirements for the SECURED Architecture

	Final D4.1/D4.2 Technical Requirements

	Appendix: New Technical Requirements

