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1 Executive Summary

This deliverable is meant to document the preliminary activities of SECURED project Task 4.1 that aims from
the collection of State-of-the-Art, user requirements, technical requirements to provide a detailed and analytic
description and analysis of the SECURED Architecture, its components, their interactions and the data that
they are exchanging. The D4.1 provides reporting of the first 6 months of activities on T4.1 that include:

• Advanced Anonymization techniques and tools including the use of Federated Learning (FL) as Privacy
Enabling Technologies;

• State-of-the-Art (SoTA) documentation and analysis of Secure Multi-Party Computation (SMPC) and Ho-
momorphic Encryption (HE) schemes and their adaptation to Machine Learning (ML) and Deep Learning
(DL);

• Synthetic Data Generation at large scale;

• Biasing and Unbiasing techniques and methods.

The results of this study are been evaluated in order to identify the most prominent schemes to adopt as a
starting point for the research and development to be done in WP2, WP4. In addition to the SoTA we also
document preliminary user requirements and descriptions of the use-cases in accordance to the SECURED
solution and derive a preliminary SECURED Architecture. All the above eventually are processed in order
to extract and document the SECURED technical requirements in the deliverable, enabling the design and
implementation of the SECURED Infrastructure and Innohub solution as sketched in the project’s Description
of Actions (DoA). This Deliverable constitutes an intermediate report on the T4.1 activities and will eventually
be updated in the final D4.2 deliverable of the task.

1.1 Related Documents

• Grant Agreement (GA) Project 101095717 - SECURED; Description of Actions (DoA) Annex 1
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2 Introduction

This report comprises the project’s Deliverable D4.1 ”State of the Art and initial technical requirements” that is
associated with the T4.1 “State-of-the-Art, Technical Specifications & Architecture Design”. As described in the
Grant Agreement (GA), this task initially aims to collect the state-of-the-art research that has been done in the
various research areas explored through the SECURED project focusing on the two flows of the project, i.e. the
data flow and the processing flow as described in the SECURED Description of Actions (DoA). The SECURED
project is exploring research on how to perform anomymization in a way that will make deanonymization at-
tempts hard to achieve and in parallel explores privacy-preserving data processing through privacy-enhancing
technologies, chiefly Secure Multi-Party Computation (SMPC) and Homomorphic Encryption (HE). The SE-
CURED project will also explore how to perform synthetic health data generation in an efficient yet privacy-
preserving manner. It should be noted that the project’s use case is the health domain so all data involved
in the above activities are health data. In addition, given that the one of the popular type of data processing
needed in today’s health applications is related to Machine Learning (ML) or Deep Learning (DL) and also that
privacy preservation across many entities (in view of ML/ DL) is done using Federated Learning (FL) schemes,
in SECURED the performed research, as described in the project’s DoA, is foused on ML/ DL) applications.
With the above guidelines in mind, in this deliverable we report State-of-the-Art (SoTA) work of related ML/
DL/FL approaches that are linked to the solutions of the following areas:

• Stat-of-the-art schemes relative to Secure Multi-Party Computation (SMPC)/Homomorphic Encryption
(HE), existing libraries and solutions including techniques of scaling up to many parties and complex
computations;

• Advanced anonymization schemes for health data that can offer considerable anonymization resistance
against privacy attacks (including de-anonymization attacks);

• Synthetic data generation solutions for health data.

Note that the above research areas are chosen after analyzing the project’s DoA objectives and the research
topics that we address in SECURED as well as the conceptual architecture of Figure 2 in the Project’s GA
Annex 1 (i.e the project’s DoA).

The most promising solutions are identified and the existing state-of-the-art gaps are documented in order to
fuel the research and development to be done in WP2, WP3 and WP4.

Apart from the SoTA work reported in the deliverable, a thorough description and analysis of the preliminary
SECURED architecture Technical requirements is also provided, as those are extracted from the work done
in T4.1 and also through discussions with the technical and use-case partners (as part of the T5.1 activities).
More specifically, a preliminary architecture of the SECURED solutions (design around the SECURED Innohub
concept) is provided, the main architectural components are identified and described while for each one of them
technical functional and non-functional requirements are documented.

2.1 Structure of the Document

The document is divided as follows:

• Section 3 provides brief state-of-the-art on ML/DL techniques that can be applied on health data and
then a similar analysis on FL techniques. The focus of the analysis is on ML/ DL/FL for medical images,
electronic health records, health monitoring and genomics as those are related to the SECURED four
use-cases and on possible inclusion of external (additional use-cases) partners through the SECURED
open call activities. Special focus is given on the security and privacy of FL solutions, thus in this section a
threat model is provided along with the state-of-the-art security and privacy concerns in FL. Additionally, in
this section the most popular FL tools and libraries are briefly presented. Finally, in the section the concept
of biased data in a regular ML/DL and FL setup are discussed and approaches on how to mitigate bias
are described.
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• Section 4 is focused on SMPC and HE solutions for health applications. Initially, a brief description of the
existing SMPC approaches is provided including Garbled Circuits and Oblivious Transfer solutions, Secret
Sharing schemes and Homomorphic Encryption schemes. Then the focus shifts towards the latest state-
of-the-art HE solutions where the latest existing libraries are presented and how such libraries are further
used to offer privacy preserving DL software libraries that support DL applications. This analysis includes
HE-only software DL libraries, SMPC software DL libraries as well as hybrid DL libraries. Furthermore,
in this section, the research that is performed on how to scale up the existing SMPC/HE schemes is
reported. Such research can be based on hardware acceleration through GPUs, processor instruction set
optimizations or dedicated custom hardware setups, as well as software acceleration through algorithmic
means. In addition to the above, we also document attempts to scale up SMPC/HE schemes under FL
settings. The section concludes with a critical view on the existing trends on the topic and insights on how
to use them to enhance health privacy.

• Section 5 provides a thorough documentation of the state-of-the-art research on synthetic data generation
for specific types of Health Data (determined from the SECURED various use-cases). Initially, the data
types and data formats that are relevant to the project, to be synthetically generated are analyzed in detail.
Then, the various synthetic data generation techniques for the identified data are reported and described
in detail. The existing libraries and tools to be used for the above functionality are also reported and
finally, an evaluation of the tools and techniques is made. Also, the next steps in the relevant research
are reported based on the latest research trends on the topic.

• Section 6 provides a state-of-the-art on health data anonymization documentation. This includes the latest
advanced anonymization techniques as well as the existing tailored techniques in the relevant literature
that are used in order to de-anonymize the anonymized data. After providing the above information,
the existing tools of anonymization and de-anomymization are presented and a comparison of those
techniques/tools is made.

• Section 7 documents the procedure and the results of extracting the SECURED Architecture Technical
requirements. Initial, the methodology that was followed for the above process is described i.e the user
journey approach and the process mapping and then the adaptation of the SECURED Architecture is
provided, leading to the preliminary SECURED architecture and an short description of each component of
this architecture. After the preliminary architectural components are identified and their core functionality
specified, the user journey/process mapping methodology is applied to each use case partner (i.e each
one of the four use-cases) using a two stage procedure: a) bilateral teleconferences between technical
and use-case partners to derive draft user requirements and identify draft processes to be mapped as well
and b) the 1st end user workshop where the full process map methodology has been applied individually
to each use-case using the already collected inputs from stage a. The outcomes of these endeavours
are provided in subsections 7.3.1 and 7.3.2 where generic (applicable to all use-cases) preliminary user
requirements are provided and preliminary processes are described for each use-case including their
association with the preliminary SECURED architecture and its components. Eventually, for each use-
case all the preliminary SECURED architecture components that the use-cases will utilize is documented.
Having collected all the above information and combining them logically with the SoTA Gaps extracted from
Sections 3 to 6 as well as with the common practises on existing integration technologies of the IT market,
an analytic presentation of technical requirements (functional and non functional) for each preliminary
SECURED architecture component is provided. Note, that since D4.1 is an intermediate deliverable for
T4.1 (the final deliverable of the task, i.e. D4.2, is due on M18) it is expected that some information of
Section 7 will be updated as the activities in T4.1 progress towards M18.

• Section 8 provides a conclusion of the deliverable
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3 Machine Learning in Health Applications

Machine learning, with its ability to learn from data, is expected to revolutionize healthcare by providing so-
lutions for diagnosis, treatment, and support [1]. In particular, machine learning can be applied to automate
clinical tasks, provide clinical support, and expand clinical capacities. Clinical task automation involves automat-
ing tasks performed by clinicians, such as medical image evaluation and routine processes. Clinical support
aims to optimize clinical decision-making and practice by integrating different healthcare records and improving
communication and coordination. Expanding clinical capacities involves screening, diagnosis, and treatment
innovations. The main application opportunities of machine learning in healthcare are as follows:

• Improving prognosis: Prognosis in clinical practice involves predicting the expected development of a
disease, including the progression of symptoms, potential complications, ability to perform daily activities,
and likelihood of survival. ML models can utilize multimodal patient data, such as phenotypic information,
genomic data, proteomic data, pathology test results, and medical images, to facilitate disease prognosis
[2, 3, 4]. ML models have been extensively developed for the identification and classification of various
types of cancers in order to identify their prognosis.

• Improving diagnosis: Machine learning can aid physicians by offering second opinions. ML learning
algorithms can analyze medical images, such as X-rays or MRI scans, and use pattern recognition to
identify specific diseases. This can assist professionals in making quicker and more accurate diagnoses,
ultimately improving patient well-being. For example, machine learning has been applied to tasks such
as diagnosing diabetic retinopathy, detecting metastases from breast pathology, and phenotyping from
observational data [5]. ML models can also be used to extract clinical features from Electronic Health
Record data for facilitating the diagnosis process [6, 7, 8].

• Developing new treatments/drug discovery/clinical trials: Deep learning models can accelerate drug
discovery and the development of new treatments. Since the process of preparing high-quality medical
reports can be tedious and time consuming, different ML-based natural language processing (NLP) tech-
niques have been used for annotating clinical radiology reports [9, 10, 11]. Machine learning can also
analyze data from clinical trial and uncover previously unknown side effects of drugs, which eventually
enhances patient care. ML generally improves the safety and effectiveness of various medical procedures
[12].

• Reducing costs: Healthcare organizations can leverage machine learning technologies to improve the
efficiency of healthcare delivery, leading to cost savings. ML can also be used to optimize resources and
reduce wastefulness in the healthcare system, for example, by learning how to schedule appointments
efficiently [9, 10, 11].

• Improving care: Machine learning can enhance the quality of patient care by proactively monitoring pa-
tients and detecting anomalies. These systems can provide alerts to medical devices or process electronic
health records when there are changes in a patient’s condition, ensuring timely and appropriate care [5].
ML techniques have been developed for real-time health monitoring such as human activity recognition
with application to remote monitoring of patients using wearable devices [13].

Although machine learning applications in healthcare have already been gaining momentum, their full potential
is still being realized. As we collect ever-growing clinical data sets, machine learning will become increasingly
important to benefit from such data and deliver efficient and effective care. However, the application of machine
learning in healthcare still has many challenges that need to be addressed before deployment [14].

• Causality and interpretability: One of the key challenges in healthcare is the need to answer causal
questions. Many important healthcare problems require algorithms that can answer "what if?" questions
about the outcomes of specific treatments (e.g., asking a question about what will happen if a doctor
prescribed treatment A instead of treatment B) [15, 14]. Classical machine learning algorithms are not
designed to handle such causal questions, and addressing this challenge requires reasoning about and
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learning from data through the lens of causal models. Causal reasoning allows us to estimate the causal
effect of certain variables on the target output, which can help identify factors that have a direct impact
on patient outcomes or specific disease conditions [16, 17]. By considering causal relationships, we can
make more informed decisions and better enforce fairness in predictions. For example, by understanding
the causal relationships between sensitive attributes (such as race or gender) and the target output, we
can assess whether the predictions are influenced by unfair biases. Causal inference methods have the
potential to enhance the interpretability, fairness, and trustworthiness of ML models in healthcare.

• Class imbalance and bias: Most life-threating health conditions are naturally rare and diagnosed once in
many (thousands to millions) patients which yields very imbalanced datasets. If classes are imbalanced
in the training data, then the model’s outcomes will also be biased to certain categories. Prediction biases
in healthcare will have profound societal consequences and must, therefore, be mitigated.

• Limited data: The size of datasets used for training ML/DL models is not up to the required scale in
general. Small and labeled datasets for specific tasks are usually available, but often result in algorithms
that tend to underperform on new data [5]. In these cases, techniques for heavy data augmentation
have been shown to be effective at helping algorithms generalize, but the distribution of transformed data
often diverges from the underlying actual distribution of the training data which is usually unknown [18].
Similarly, large but unlabeled datasets are also easier to collect, but will require a shift towards improved
semisupervised, unsupervised, or transfer learning techniques.

• Data sparsity: Another challenge is dealing with missing data. In healthcare, data is often incomplete
or missing due to various reasons (e.g., unreported or very noisy samples), and this can also introduce
biases and impact the performance of machine learning models. Missing values can negatively impact
model performance.

• Unreliable annotation: Defining reliable outcomes is another important consideration in healthcare ma-
chine learning. Outcomes are used to create labels for supervised prediction tasks and to define cohorts
in clustering tasks. However, clinicians like expert radiologists are rare professionals and hard to engage
in secondary tasks like data annotation. As a result, less skilled personnel or ML/DL automated algorithms
are usually employed for data labelling, which often leads to many problems such as coarse-grained la-
bels, class imbalance, label leakage, and misspecification [18]. It is essential to create reliable outcomes
from heterogeneous data sources and to understand the clinical relevance of these outcomes.

• Distribution shifts: In realistic healthcare settings, distribution shifts are common and can have a signifi-
cant impact on the performance of machine learning (ML) models. For example, when ML models trained
on images from one imaging center are deployed on images from different centers, the performance of
the models tends to degrade. This is because the imaging data from different domains may have varia-
tions in acquisition protocols, equipment, and patient populations, leading to differences in the underlying
distributions. Similarly, in predictive healthcare, ML models are typically developed using historical patient
data, but they are then tested on new patients. This raises questions about the effectiveness and gener-
alizability of the ML predictions. Distribution shifts can be addressed by domain adaptation and transfer
learning [19].

• Security and privacy: The security and privacy problems of ML can be classified into three main cat-
egories: (1) confidentiality, (2) integrity, and (3) availability problems [18]. Confidentiality issues include
model stealing and training-data extraction (e.g., membership inference [20] and data-reconstruction at-
tacks [21, 22]). Training-data extraction leads to privacy problems which are both a sociological as well as
a technical issue and must be addressed jointly from both perspectives. Integrity problems include model
evasion (after deployment), model poisoning (during training) [18], and manipulating explanations both in
training [23] and testing time [24]. Both attacks aim to manipulate model behavior on some samples after
deployment. Finally, availability attacks include creating sponge examples that cause increased latency
and resource consumption (e.g., cloud usage) in the deployment phase [25].
The fact that ML models are neither secure nor robust hinders significantly their practical deployment in
critical healthcare applications dealing with sensitive personal data. Indeed, the aforementioned problems
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pose not only regulatory, ethical and legal challenges, related to privacy and data protection, but also
technical ones. Perfectly eliminating these threats is a non-trivial, and sometimes impossible task without
sacrificing model quality. However, ensuring the security of ML models and health data are paramount to
building trust in these technologies in order to facilitate their widespread adoption in the industry.

In summary, machine learning holds great potential for healthcare, but careful consideration of the unique
technical challenges and alignment with clinical needs is necessary for successful implementation.

3.1 Deep Learning

Historically, constructing a machine-learning system required domain expertise and human engineering to de-
sign feature extractors that transformed raw data into suitable representations from which a learning algorithm
could detect patterns. In contrast, deep learning [26], which is a subfield of machine learning, is a form of
representation learning in which a machine is fed with raw data and automatically develops its own represen-
tations needed for pattern recognition [27]. Deep learning has seen a dramatic resurgence in the past decade,
largely driven by increases in computational power and the availability of massive new datasets. Deep-learning
models can accept multiple data types as input, which makes them particularly appealing to process hetero-
geneous healthcare data. Deep learning techniques have had a significant impact on computer vision, natural
language processing, and reinforcement learning. These results can be leveraged by various medical appli-
cations including medical imaging, processing EHRs, robotic-assisted surgery, genomics, and real-time health
monitoring [28, 5, 29, 30, 31, 32].

3.1.1 Medical Imaging

The purpose of medical-image analysis is to assist clinicians and radiologists for the efficient diagnosis and
prognosis of diseases. The prominent tasks in medical image analysis include detection, classification, seg-
mentation, retrieval, reconstruction, and image registration.

Convolutional Neural Network [26] have been successfully applied in medical imaging for various diagnostic
purposes. They have achieved remarkable accuracy comparable to physicians and have the potential to assist
in clinical decision-making and improve patient outcomes.

CNNs trained on medical imagery, including radiology, pathology, dermatology, and ophthalmology, can aid
physicians by providing second opinions and identifying concerning areas in images [5, 28]. CNNs have
achieved human-level performance in object-classification tasks and demonstrated strong performance in trans-
fer learning, where they leverage pre-training on unrelated datasets and then fine-tuned on medical images.
These models have physician-level accuracy in diagnosing a range of conditions, including melanomas, diabetic
retinopathy, cardiovascular risk, breast lesion detection, and spinal analysis [5, 30].

3.1.2 Electronic Health Record

In healthcare, natural language processing is mainly used in applications related to EHRs. EHRs are becoming
increasingly prevalent and contain vast amounts of valuable data [5]. By parsing and organizing the data
temporally and across patients, deep-learning models can answer high-level medical questions about relevant
past medical history, identify current problem list, and recommend interventions [33, 34].

Most predictive models in EHRs have used supervised learning on structured data like lab results, diagnostic
codes, and demographics [9, 10, 11]. Models that incorporate the temporal sequence of events in a patient’s
record have been used to predict future medical incidents. Large-scale Recurrent Neural Networks (RNN)
are already demonstrating impressive predictive results by combining structured and unstructured data (e.g.,
clinical notes) in a semi-supervised manner [34]. These models outperform other techniques in tasks like
mortality prediction, readmission prediction, length of stay estimation, and diagnosis prediction.
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3.1.3 Robotic-assisted surgery

Robotic-assisted surgery can be enhanced using deep reinforcement learning, allowing robots to perform repet-
itive and time-sensitive surgical tasks with more adaptability, efficiency and precision. Computer vision models
and reinforcement learning algorithms can enable robots to perceive surgical environments and learn from sur-
geons’ motions, automating repetitive surgical tasks like suturing and knot-tying [35, 36]. These techniques are
especially useful in fully autonomous robotic surgery or minimally invasive surgery, like laparoscopic surgery.
Deep imitation learning [37], RNNs [38] [39], and trajectory transfer algorithms can automate teleoperated ma-
nipulation tasks in these procedures [40].

However, challenges exist in accurately localizing instrument positions and orientations in surgical scenes and
collecting sufficient training data, especially for more general surgical tasks [5].

3.1.4 Real-time health monitoring

Real-time monitoring of critical patients plays a crucial role in their treatment process. There is growing interest
in continuous health monitoring using wearable devices, IoT sensors, and smartphones. In this setup, health
data is collected from the wearable device and smartphone and transmitted to the cloud for analysis using ML/DL
techniques. The analyzed outcomes are then sent back to the device for appropriate actions or interventions.

One example of such a system architecture is presented in a framework described in [41]. The system integrates
mobile and cloud technologies to monitor heart rate. Another study [13] provides a review of different ML
techniques for human activity recognition, specifically focusing on remote monitoring of patients using wearable
devices.

While sharing health data with cloud platforms for further analysis brings numerous benefits, it also raises
important concerns regarding privacy and security.

3.1.5 Genomics

Deep learning has been adapted for genomics, allowing for improved analysis of various genomic measure-
ments and benefiting biomedical applications, such as disease prediction, pathogenicity assessment, and
biomarker analysis. One area where deep learning is valuable is in genome-wide association (GWA) stud-
ies. GWA studies aim to identify genetic mutations associated with specific traits. Deep learning algorithms
can analyze large patient cohorts and latent confounders [42]. In the future, integrating external modalities
like medical images or molecular phenotypes may further enhance GWA studies. Phenotype prediction from
genetic data, including complex traits and disease risk, can also be improved with deep learning [43]. By inte-
grating additional modalities like clinical history, and wearable device data into phenotype prediction too, deep
learning models can enhance accuracy [44].

3.2 Federated Learning

Federated Learning [45] is a branch of Machine Learning, where multiple entities collaboratively train a joint
model in such a way, that their potentially private and sensitive data never is never shared with other participants
in the protocol. In Machine Learning, a single model is trained iteratively on a single dataset until convergence.
Instead, in Federated Learning, in every training round (i.e., epoch) data owners (called clients) train a common
model locally and share the corresponding model updates which are aggregated into a single global model for
the following round. The process is aided by a trusted server (called aggregator) as illustrated in 1.

There are several angles Federated Learning [46] systems can be differentiated, such as Vertical or Horizontal,
and Cross-silo or Cross-device. The first angle is concerned with the feature space of the underlying datasets,
the second depends on the number of clients. More specifically, client datasets in Vertical Federated Learning
have different feature space, while in Horizontal Federated Learning the datasets have the same feature space
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across all clients. Concerning the participants, in Cross-silo Federated Learning there are typically a handful
of reliable participants with significant computational power and sophisticated technical capabilities. On the
other hand, in Cross-device Federated Learning there can be even millions of potential unreliable participants,
with small datasets and limited computational resources. To tackle both ends of these spectrums Federated
Learning has to be flexible. Its algorithmic model is presented below. Indeed, several possible modifications
are possible, such as the model selection (e.g., convolutional neural networks, recurrent neural networks, etc.),
the model initialization (e.g., random, pre-trained, etc.), the convergence criteria (e.g., fixed rounds, accuracy-
based, etc.), the broadcasting method (e.g., entire model, only first layers, etc.), and so on. Below we highlighted
three aspects: the client selection method, the training mechanism, and the aggregation technique.

1. The aggregator server initializes the model, i.e., determination of the hyperparameters.

2. In order to converge the model the following are necessary:

(a) The aggregator broadcasts the model to some clients.
(b) Those clients train that model on their local dataset and share the result with the aggregator.
(c) The aggregator aggregates the received model updates into the new global model.

3. The final model is broadcasted to all participating clients.

3.2.1 Client Selection Methods

Concerning client selection, in Cross-silo Federated Learning all participants are selected as there are only a
few of them and they are all reliable. In contrast, only a fraction of clients is selected in Cross-device Federated
Learning to battle the emerging communication bottleneck. The server can either randomly pick the desired
number of participants from a pool of devices (the de-facto standard mechanism) or use some algorithm for
client selection. In the following we highlight a few strategies, for a more comprehensive list we refer to [47].

• Federated Client Selection [48]: FedCS solves a client selection problem with resource constraints, i.e.,
it select as many clients as possible within a specified deadline to accelerate performance improvement.

Figure 1 – Illustration of Federated Learning in the Health Domain.
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• Power of Choice [49]: PoC is a selection method based on local loss to tackle the trade-off between
convergence speed and solution bias.

• Oort [50]: Oort prioritizes the selection of those clients who improve the model’s accuracy the most in
order to enhance the convergence speed.

• Online Client sElection and bAndwidth allocatioN [51]: OCEAN formulates a stochastic optimization prob-
lem for joint client selection and bandwidth allocation under long-term client energy constraints to achieve
long-term performance guarantee.

• Federal Optimization via LB [52]: FOLB performs client selection based on the correlation between local
update and global update to optimize the expected convergence speed.

3.2.2 Optimization Strategies

Each selection method of the above requires specific optimization-process. For instance, the number of local
rounds, or the training mechanism itself could be subject to change (e.g., SGD, Adam). In the following we
highlight a few methods, for a more details we refer to [53].

• First-order optimization algorithms: these methods rely on the first derivative (gradient) for optimization
(i.e., to choose the direction to move in the search space). The two core aspects of these methods are 1)
how the gradient is calculated and 2) how it is scaled.

– Gradient Descent (GD) / Stochastic Gradient Descent (SGD) / Batch Gradient Descent (BGD): In
GD the gradient is calculated directly. On the other hand, in SGD and BGD, it is rather appropriated,
using prediction error: in SGD it is based on one sample, while in BGD it is based on multiple.

– Adaptive Gradient (Adagrad) / Root Mean Square Propagation (RMSProp) / Adaptive Moment (Adam):
During training the scale of the gradients can be adapted automatically. Adagrad adjust the weights
such that a high gradient will have low learning rate and vice versa. RMSprop adjusts Adagrad
by reducing its monotonically decreasing learning rate. Adam takes RMSProp one step further by
incorporating momentum into the scale.

• Second-order optimization algorithms: these methods, besides the first they also rely on the second
derivative (Hessian) for optimization.

– Newton’s Method: It is an iterative approach to find a root of a function (i.e., the gradients). It start
with an initial guess, and calculates the function’s gradient (i.e., the gradient of the gradient) to update
the guess with the interception of this tangent line with the axis.

– Quasi-Newton methods: when the second order derivatives (i.e., Jacobian or Hessian) are not fea-
sible to compute, they must be approximated. Such method is Broyden-Fletcher-Goldfarb-Shanno
(BFGS), which estimates the inverse Hessian matrix to limit the search within the variable space. An
enhanced version is Limited-memory BFGS (l-BFGS), which stores only a few vectors to represent
the approximated inverse matrix implicitly.

• Besides, there are optimization algorithms which do not make use of the derivatives at all. The core
reason for their use is the unavailability of the gradients, i.e., it cannot be calculated due to complexity or
other real-world reasons.

– Direct / Stochastic / Population search algorithms: Direct methods are deterministic, as they search
the space using geometric shapes or decisions, e.g. patterns. On the other hand, Stochastic meth-
ods are non-deterministic, as they utilize randomness during the search. Population methods are
similar, but they maintain a pool of candidate solutions for exploring the optima.
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3.2.3 Aggregation Techniques

Lastly, one can set how the server should aggregate the models. The classical solution is Federated Averaging
(FedAvg) [54], where aggregation is implemented as an average function, so the weights of the different local
models are averaged to provide new weights and, thus, a new model. In the following we highlight a few variants.
For more comprehensive lists we refer to [55, 56, 57].

• Proximal Federated Learning [58]: FedProx tackles the problem of data heterogeneity. It is based on
the usage of the proximal term, as per the average convergence around the proximal terms are local
sub-problems to effectively restricts the effect of variable local updates.

• Federated Multi-Task Learning [59]: MOCHA is a framework for federated multi-task learning.

• Federated Personalization [60]: FedPer tackles the personalization issue of FL. The principle is that the
model is split in base and personalized layers, where the latter are not communicated to the server, so
only the base layers are aggregated using transfer learning methodologies.

• Federated Match Averaging [61]: FedMA aims to update the global model via layer-wise matching and
aggregation of inner model components, namely neurons. Although it outperforms several other aggre-
gation mechanisms, it only works on simple neural networks (such as CNN and LSTM based models) due
to its specificities.

• One-Shot Federated Learning[62]: OSFL tackles the communication bottleneck of FL. Essentially, the
locally trained models are aggregated only once to form an ensemble model.

3.2.4 Incentive Mechanisms

Incentive mechanisms in federated learning refer to the strategies and mechanisms used to motivate partici-
pants to actively engage in the collaborative learning process and contribute their resources, such as data and
computing power [63].

In cross device federated learning the challenge of incentive mechanisms is profound. Here, the participants
are often individuals who may have limited motivation to contribute their resources. Hence, designing effec-
tive incentive mechanisms becomes crucial to encourage active participation and ensure the success of the
federated learning process.

On the other hand, in the cross silo setting, incentive mechanisms are often less of an issue, primarily because
the participants have clear boundaries and interests, which are more likely to be aligned. The benefits of
participating, such as access to the shared model’s improved performance or the opportunity to leverage a larger
and more diverse dataset, act as natural incentives for participants. For instance, in healthcare applications,
hospitals or research institutions may collaborate to improve disease diagnosis accuracy or advance medical
research, which benefits each participating entity individually.

However, it is worth noting that even in the cross silo setting, there can still be challenges [64]. Issues may
arise when participants have varying levels of contributions or when resource allocation becomes uneven. In
such cases, designing fair incentive mechanisms that distribute benefits proportionally and ensure equitable
participation remains important [65].

A key concept is the Shapley value [66], which was designed to allocate goods to players proportionally to
their contributions. A high-level summary of the role of the Shapley value within machine learning is presented
in [67]. The main disadvantage of the Shapley value is its exponential computational requirement, which makes
it unfeasible in most usecases. Although several approximations were proposed in the literature using sam-
pling [68], gradients [69] and influence functions [70], most of them utilize fine-grained individual level informa-
tion, which makes them unfeasible for privacy-focused use-cases. Recently, privacy-enhanced solutions have
also emerged [71, 72], but they leave plenty of room for improvement. Today, no federated learning framework
exist that ensures security and privacy while enabling a non-trivial contribution score allocation amongst the
participants.
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3.3 Safety of Federated Learning

Federated learning, with its distributed and collaborative nature, brings forth several privacy and security con-
cerns that need to be carefully addressed. These concerns arise due to the decentralized processing of sen-
sitive data and the potential vulnerabilities associated with sharing models and aggregating information across
multiple participants. Understanding and mitigating these concerns is crucial for ensuring the privacy and se-
curity of federated learning systems [73].

3.3.1 Threat Models of Federated Learning

In general, there are three aspects of risk to be considered within federated learning: 1) The privileges of each
user on the model 2) what access on modifications each user has 3) and finally at which stages of the process
has access to. It is important to assess and address these threats in the design and implementation of federated
learning systems to ensure robust security and privacy protections. Mitigation strategies can be employed to
counter these threats and maintain the integrity and privacy of the federated learning process [74].

Considering the privileges of each user, an attack can be carried out by insiders (e.g., the aggregator server or
any participants) or outsiders (e.g., an eavesdroppers on the communication channel between participants and
the server or a users of the final model). The insider threat is more severe, especially when executed by the
server. Relative to the participants, the source of an attack can be a single client or multiple clients launching
a coordinated attack.

Concerning the access on modifications each user has (i.e., the capability of the adversary), the two most
common threat models in federated learning is below.

• Honest-but-Curious (or Semi-Honest) Participants: This threat model assumes that participants in the
federated learning process follow the protocol but may try to gain additional information by analyzing the
exchanged data or model updates.

• Malicious Participants: This threat model considers participants who actively deviate from the protocol
and engage in malicious behavior by intentionally provide incorrect or manipulated model updates to
undermine the integrity of the federated learning system.

Considering which stage of the process each user has access to, an attack can happen at training and at
inference time. In the former, the attacker attempt to learn, influence, or corrupt the FL model itself for instance
by running an active data or model poisoning attacks. In the latter, the attacker targets the gradients (individual
or aggregated) to uncover sensitive details about the underlying datasets of other clients. The effectiveness of
such attacks is determined by the available information about the model: white-box and black-box corresponds
to full and query access, respectively.

3.3.2 Security Concerns of Federated Learning

The participants in Federated Learning may have misaligned incentives, which could lead to malicious be-
haviour. There are plenty of attack types that aim to compromise the system and even more mechanisms to
realize those goals. Below we give a non comprehensive view of the corresponding notions [75].

• Sybil Attack [76]: an adversary creates multiple fake participants to disrupt or manipulate the collaborative
learning process. The attacker aims to control a significant portion of the federation by simulating a larger
number of participants.

• Byzantine Attack [77]: it involves participants behaving maliciously by providing incorrect or misleading
updates to the federated learning system. These attacks can disrupt the training process, compromise
the model’s accuracy, and hinder the convergence of the learning algorithm.
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• Adversarial Attack [78]: specially crafted input data that are intentionally designed to cause misclassifica-
tion or incorrect behavior in machine learning models. These examples are created by adding impercep-
tible perturbations or modifications to legitimate input samples with the goal of deceiving the model.

• Poisoning Attack [79]: malicious participants intentionally inject malicious updates into the learning pro-
cess. This can compromise the integrity and performance of the trained model and lead to erroneous or
biased results.

• Backdoor Attack [80]: a hidden vulnerability or malicious behavior intentionally inserted into a model by
an adversary. A backdoor attack aims to compromise the integrity and security of the federated learning
process, allowing the attacker to manipulate the model’s behavior during inference.

Ensuring the integrity of the federated learning system and implementing robust defense mechanisms to de-
tect and mitigate such attacks is crucial for maintaining the security and reliability of the collaborative learning
process. Below we highlight few corresponding core concepts.

• Byzantine Resilience [81]: the ability of the system to withstand and mitigate malicious behaviors or
attacks from participants

• Adversarial Robustness [82]: the ability of the system to withstand and mitigate adversarial attacks, par-
ticularly those involving adversarial examples.

• Certified Defenses [83]: defense mechanism that provides a formal guarantee or certification of the
model’s robustness.

• Ad-hoc defenses strategies: these strategies provide additional layers of security and resilience against
potential security threats.

– Participant Validation and Reputation Systems: These can help verify the trustworthiness of partic-
ipating entities. This involves evaluating credibility and track record of participants to identify and
exclude potentially malicious or unreliable participants from the collaborative process.

– Data Sanitization and Anomaly Detection: These can help identify and filter out potentially mali-
cious contributors. This involves carefully examining the data for anomalies or patterns that deviate
significantly from expected behavior to reduce the impact of the adversary.

– Robust Aggregation: Enhancing the aggregation process can mitigate the influence of adversaries’
malicious model updates. They are designed to mitigate the impact of outliers, biased updates, or
intentionally manipulated contributions during the aggregation step.

3.3.3 Privacy Concerns of Federated Learning

One of the primary privacy concerns in federated learning is the exposure of sensitive data. Each participant
in the federated learning process holds their own local data, which may include personal, sensitive, or propri-
etary information. Without appropriate safeguards, the sharing and aggregation of this data can pose privacy
risks. Unauthorized access to participant data or the leakage of private information during the model training or
aggregation process can lead to privacy breaches and compromises. Although Federated Learning provides
privacy by design to some extent, many researchers have developed several techniques for this concept to
show unintended information leakage [84].

• Model inversion [85]: it exploits the outputs of a machine learning model to infer sensitive information
about individuals by reconstructing attributes of the datasets used for training.

• Membership inference [86]: the attacker aims to infer membership information (i.e., determine whether a
specific data sample was part of the training dataset) by analyzing the model’s outputs for the target data
samples (i.e., exploiting patterns or discrepancies in the model’s behavior).
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• Property inference [87]: instead of individual level information, this attack aims to infer sensitive or confi-
dential properties of the training data.

• Reconstruction attacks [22]: an adversary attempts to reconstruct the original training data by leveraging
the trained model and its outputs, parameters, or gradients.

• (Hyper)parameter inference [88]: instead of the training data, this attack aims to infer sensitive or confi-
dential information about the parameters of a machine learning model.

There are a handful of privacy-preserving techniques that either partly mitigate or entirely prevent the above
listed attacks. A few common privacy-preserving mechanisms utilized in federated learning are below.

• Differential Privacy [89]: This Privacy-enhancing technology injects noise to the training process to prevent
the identification of individual data samples. It ensures that the presence or absence of any particular
data point does not significantly impact the overall model’s behavior. There are several noise injection
techniques, such as input, output, and objective function perturbation, as well as adding noise to the
gradients. Could either be locally (e.g., noising the individual gradients) or globally (noising the aggregated
gradients), corresponding to two different threat models.

• Secure Aggregation [90]: Secure aggregation techniques, such as Secure Multi-Party Computation (SMPC)
or Homomorphic Encryption (HE) as described in Section 4, allow participants to aggregate their local
model updates without revealing their individual contributions. This ensures that the privacy of the partic-
ipants’ local data is maintained during the aggregation process.

• Ad-hoc defense strategies: There are a handful of strategies which were shown empirically to mitigate to
some extent the information leakage. They could be utilized before, during, and after training.

– Before: Suppressing the sensitive data or injecting fake entries, using resistant models or model
stacking / distillation techniques are all examples of this category.

– During: These techniques manipulate the intermediate gradients. These methods are not limited to,
but include compression techniques such quantilization (e.g., rounding) and sparsification (e.g., use
random or Top-K elements, discard values below a threshold), gradient normalization, and regular-
ization.

– After: Rounding the output of the model or only returning the Top prediction also reduce the attack
surface, although in Federated Learning they are less effective (due to the constant sharing of internal
model updates).

Note that all these mechanisms have disadvantages: Differential Privacy could potentially change the function-
ality and output of the model, while Secure Aggregation does only protect the local updates, hence, information
could still leak from the aggregates, which could potentially be attributed to particular participants with appro-
priate background knowledge. The later sections of this report are concerned with cryptographic solutions and
anonymization techniques, so these are explained in more depth there.

3.4 Health Related Applications of Federated Learning

Applications of machine learning require large and diverse data sets. However, medical data sets are scarce
and difficult to obtain. FL addresses this issue by enabling collaborative learning without centralising data [91].
Research has shown that models trained by FL in healthcare can achieve performance levels comparable to
ones trained centrally on the union of the institutes’ data sets and superior to models that are trained exclusively
on single-institutional data [92].

FL has shown promise in utilizing large-scale EHRs for predictive modeling without compromising patient pri-
vacy [91, 93]. One example is the use of FL for predicting hospitalization of patients with heart-related diseases
using EHR data [94]. In this approach, an FL-based decentralized scheme is implemented, where each device
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(representing a hospital or healthcare provider) trains the model locally using its own EHR data. The trained
model parameters are then shared with a central server, which aggregates them to update the shared model.
The concept of federated autonomous deep learning (FADL) has been introduced in [95], focusing on the use
of distributed EHR data for training deep learning models.

In the field of medical imaging, FL has been successfully used for tasks such as whole-brain segmentation
in MRI [96] and brain tumor segmentation [92]. FL has also been employed in fMRI classification to identify
reliable disease-related biomarkers [97]. Furthermore, FL has been suggested as a promising approach in the
context of COVID-19, potentially enabling collaborative analysis of medical imaging data to identify imaging
biomarkers associated with the disease [98].

Split learning allows for training deep learning models without sharing patients’ critical data with the server.
Different configurations for split learning models, such as vertically partitioned data-based configurations, have
been proposed [99]. SplitNN is one framework that implements the split learning approach and ensures that
sensitive patient data remains on the local device while still allowing for model training and inference.

FL has also been applied to accelerate drug discovery [100]. Drug discovery and development is a high risk
process as there is a failure rate of around 90% for drug candidates that reach the clinical studies phase.
Therefore, making the early stages of drug discovery more efficient and accurate holds the potential to have a
significant impact on the pharmaceutical industry. The FL architecture proposed in [100] enhanced predictive
Machine Learning models on decentralised data of 10 pharmaceutical companies, without exposing proprietary
information.

There are several other large-scale initiatives and innovative collaborations to deploy FL for healthcare appli-
cations. The HealthChain project1, implemented across four hospitals in France, focuses on developing and
deploying an FL framework for the prediction of breast cancer and melanoma treatment response. By leverag-
ing FL, the project aims to generate common models that can effectively analyze histology slides or dermoscopy
images. The Federated Tumour Segmentation (FeTS) initiative2 is a large-scale effort involving 30 international
healthcare institutions. FeTS utilizes an open-source FL framework with a graphical user interface to improve
tumour boundary detection in various cancer types. By combining data from multiple institutions, FeTS aims to
enhance the accuracy and reliability of tumour segmentation models for brain gliomas, breast tumours, liver tu-
mours, and bone lesions in patients with multiple myeloma. The Trustworthy Federated Data Analytics (TFDA)
project3 along with the German Cancer Consortium’s Joint Imaging Platform4 conducts decentralized research
across German medical imaging research institutions. Another international research collaboration demon-
strated the usefulness of FL for the assessment of mammograms and produced ML models that generalized
across several institutes5.

In summary, FL and related approaches offer promising solutions for healthcare applications especially if the
available training data at each party is limited. FL allows for collaborative model training on decentralized data
while maintaining privacy and data security, if appropriate data protection measures are taken.

3.5 Existing tools and Libraries

When considering to use Federated Learning, there are several open-source frameworks and software options
available. Below we enlist some notable efforts (in alphabetical order).

• Clara (https://developer.nvidia.com/blog/federated-learning-clara/): Developed by NVIDIA,
Clara Train SDK features the usage of NVIDIA EGX, the edge AI computing platform. It supports different
distributed architectures, such as peer-to-peer, cyclic, and server-client. It emphasizes data privacy and
security and provides a robust and secure environment for FL.

1https://www.substra.ai/en/healthchain-project
2https://www.fets.ai
3https://tfda.hmsp.center/
4https://jip.dktk.dkfz.de/jiphomepage/
5https://blogs.nvidia.com/blog/2020/04/15/federated-learning-mammogram-assessment/
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• IBM Federated Learning (https://ibmfl.mybluemix.net/): Developed by IBM, IBMFL provides a ba-
sic fabric for Federated Learning on which advanced features can be added. It focuses on scalability
and enterprise-grade capabilities, offering a comprehensive framework for distributed model training and
supports integration with IBM Watson and other IBM Cloud services.

• EasyFL (https://github.com/EasyFL-AI/EasyFL): EasyFL is a user-friendly and accessible federated
learning framework that simplifies the process of implementing federated learning algorithms and work-
flows. It provides a high-level API and pre-built components to enable developers to quickly build and
deploy federated learning systems with ease.

• FedBioMed (https://fedbiomed.gitlabpages.inria.fr/): Developped by research centre INRIA, Fed-
BioMed is a federated learning framework designed specifically for biomedical applications, enabling col-
laborative model training on distributed healthcare data while preserving privacy and security.

• Federated AI Technology Enabler (https://fate.fedai.org/): Developed by Webank, FATE is an open-
source project that provides a secure computing framework to support the federated AI ecosystem. It sup-
ports multiple algorithms and deployment scenarios as well as it implements multiple secure computation
protocols. It enables easy big data collaboration and model training across distributed networks with data
protection regulation compliance.

• FedLearner (https://github.com/bytedance/fedlearner): Developed by byte-dance / Tencent, Fedlearner
is a collaborative machine-learning framework that enables joint modeling of data distributed between in-
stitutions. It is scalable and efficient with a modular architecture and support to multiple machine learning
frameworks, making it adaptable to different use cases.

• FedML (https://www.fedml.ai/): FedML is a comprehensive federated learning research library that
provides a wide range of tools, algorithms, and benchmarks for developing and evaluating federated
learning systems. It aims to facilitate the development of robust and efficient federated learning solutions
across various domains while promoting collaboration and advancing the state of the art in the field.

• Flower (https://flower.dev/): Originally developed by the University of Oxford, Flower is a open sourced
framework for building federated learning systems. It emphasizes simplicity and flexibility (i.e., customiz-
able, extendable, and framework-agnostic) while offering a user-friendly interface and easy integration
with existing ML pipelines. It support for various deployment scenarios.

• OpenFL (https://github.com/intel/openfl): Initially developed by Intel and hosted by the Linux Foun-
dation, OpenFL is designed for large-scale collaborations by providing a flexible infrastructure for dis-
tributed model training with features like dynamic participant management and efficient communication
protocols. It is a flexible, extensible, and easily learnable tool for data scientists.

• PaddleFL (https://github.com/PaddlePaddle/PaddleFL): PaddleFL is an open-source federated learn-
ing framework where researchers can easily replicate and compare different algorithms. Built for Pad-
dlePaddle and based on Kubernetes, so it provides distributed training and flexible scheduling of training
jobs. It also offers efficient communication protocols, advanced encryption techniques, and supports
various scenarios.

• PySyft (https://docs.openmined.org/pysyft/): Developed by the OpenMined community, PySyft is
an open-source library built on PyTorch and Tensorflow that provides tools for federated learning and
encrypted computations (e.g., SMPC). It further enhances the secure and privacy-preserving collaboration
by utilizing differential privacy techniques.

• Substra (https://www.substra.ai/): Developed by a multi-partner research project around Owkin, Sub-
stra is a federated learning software framework focusing on the medical field for data ownership and
privacy by enabling the training and validation of machine learning models on distributed datasets. It pro-
vides a marketplace for data scientists to securely exchange models and datasets while maintaining data
privacy.
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• TensorFlow Federated (https://www.tensorflow.org/federated): Developed by Google, TFF is an
open-source framework on which Android mobile keyboard predictions is based. It provides abstractions
for federated computations and supports various federated learning algorithms.

These platforms offer different strengths, such as advanced security measures, scalability, simplicity, compati-
bility with specific ML frameworks, or support for specific deployment scenarios. The choice depends on specific
requirements and preferences of users and organizations.

3.6 Unbiased Federated Learning Approaches

3.6.1 Bias taxonomy

3.6.1.1 Biases and discrimination

According to US law, the fairness of a decision-making process is often understood through two distinct notions:
disparate treatment and disparate impact. On one hand, we want a negative answer to the question: Does
the process based on subjective individual elements make treatment disparate? On the other hand, we want
a negative answer to the question: Do the results show differences between people with different sensitive
attributes?

For example, we want the outputs and errors of the machine learning model to be similar for two subpopulations.
In the same way, two similar individuals should receive closed model decisions 6. However, by default, machine
Learning models tend to reproduce and amplify biases, leading to unfair outputs.

These biases can come from the data: there are known biases such as selection bias when the sampling is
poor, historical biases, when a population is disadvantaged, etc.

But biases can also be due to algorithms: some recommendation algorithms lock people in bubbles instead
of offering them new possibilities. Also, if a data set already has biases, future observations are less likely to
contradict past predictions. This is because the new data collection could be driven by past decisions of the
machine learning model, leading to confirmation bias.

Moreover, labels are often created by humans and a model will tend to reproduce those biases to increase its
performance. At group-level discrimination, a minority group could be penalized because of a small sample
size or features less informative for that particular group characteristics. The consequence is a disparate result
between this group and the majority group.

As shown in [101], removing sensitive features from the training dataset can be insufficient. Indeed, these
features can be correlated with others, and the model will find the new associations between the features to
improve the loss function. So even if no sensitive feature is easily identified as a potential risk for fairness,
sensitive information can still be spread or hidden through features and difficult to recognize. A popular solution
is to keep them during the learning phase of the model as a constraint to assist the training towards a fairer
direction. Then, during the testing phase, sensitive attributes can be used to measure the model fairness.

The effect of discrimination can be direct or indirect, which is mainly why removing sensitive features is not a
solution, although it may be required by the law. We will see that there are several sources of discrimination that
can affect a population. Some forms of discrimination are systemic discrimination that refers to policies, customs
of behavior that are part of an organization’s culture or structure that perpetuate discrimination against certain
subgroups of the population. Conversely, statistical discrimination occurs when decision-makers use average
(assumed) group statistics to judge an individual belonging to that group. This typically occurs when decision-
makers (e.g., employers, or law-enforcement officers) use the obvious and recognizable characteristics of an
individual as an indicator of hidden or more difficult to determine characteristics.

6Closed decision making is the term used when the person who is in charge of the decision operates in a group known to him
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3.6.1.2 Data-to-algorithms bias

For the bias coming from the data, we propose the following taxonomy from [102] considering seven main
categories.

Measurement bias Measurement or reporting bias arises from how we choose, utilize, and measure particu-
lar features. For instance, it is known that some city areas are more controlled by the Police, and consequently
offenses are over-estimated in this area compared to area less controlled by the Police.

Omitted Variable Bias This bias occurs when some important variables are left out of the dataset and/or the
model. Consider as an example an inter-company canteen that uses a model to predict the inventory needed
to provide the meal. However, the explanatory variables of their model lack the exceptional closing dates of one
of the companies. When the company in question is closed, the prepared stocks will be oversized compare to
the actual demand.

Representation Bias This bias stems from how we sample from a population during the data collection
process. Non-representative samples lack the diversity of the population, with missing subgroups and other
anomalies. For instance, if we perform biometry with data collected in one specific local airport like e.g. Rennes
or Clermont Ferrand, we will have an over-representation of some population sub-groups at the expense of the
others population sub-groups.

Aggregation Bias Aggregation bias occurs when false conclusions are drawn about individuals from ob-
serving the whole population. A well-known aggregation bias is illustrated by the Simpson paradox. Here,
we consider two treatments for a cancer: one based on aggressive chemotherapy and the other based on ra-
diotherapy. At aggregate level, when we look at the total treatments results, we see that there is more cancer
remission for patients who receive radiotherapy (61 patients) instead of chemotherapy (39 patients). However, if
we look at results at disaggregated level, we see that the two sub groups of patients have not received the same
kind of treatment. Patients with state 1 and 2 cancer, who are more likely to be in remission, overwhelmingly
receive radiotherapy treatment while patients with severe condition received chemotherapy in large majority.
If we consider only state 1 and 2, then patients receiving chemotherapy have a better probability of remission
than patient receiving radiotherapy. Similarly, if only patients with state 3 and 4 cancer are considered, patients
receiving chemotherapy have a better probability of remission than patients receiving radiotherapy. However,
due to the distribution of the treatments, at aggregate level, the result is reversed. We extend this example in
Table 4.

Radiotherapy Chemotherapy
Patient with state 1 and 2 cancer 60 remissions on 100 patients (60%) 9 remission on 10 patients (90%)
Patient with state 3 and 4 cancer 1 remission on 10 patients (10%) 30 remissions on 100 patients (30%)
Total 61 remissions on 110 patients (55,45%) 39 remissions on 110 patients (35,45%)

Table 4 – Illustration of the Simpson paradox
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Sampling Bias Similar to the representation bias, this bias occurs when non-random sampling of subgroups
is performed. Due to sampling bias, trends estimated for one population may not generalize to data collected
from a new population. We take snowball sampling as an example, a technique where existing study subjects
recruit future subjects from among their acquaintances. Thus, the sample group is said to grow like a rolling
snowball. As the sample builds up, enough data are gathered to be useful for research. This sampling technique
is often used in hidden populations, such as drug users, which are difficult for researchers to access. However,
if we consider this approach to study a large heterogenous population, e.g. to make a political poll for a national
election, there will be obvious bias.

Longitudinal Data Fallacy Researchers analyzing temporal data must use longitudinal analysis to follow
cohorts over time to learn their behavior. Instead, temporal data is often modelled using cross-sectional analysis,
that can introduce a Simpson’s paradox (see explanation above).

Linking Bias This bias concerns the study of networks (social, transport, etc.). It occurs when network at-
tributes obtained from user connections, activities, or interactions differ and misrepresent true user behavior,
such as when they disregard connection intensity.

3.6.1.3 Algorithms and Algorithms to user interaction bias

For the bias coming from the algorithm, we propose the following taxonomy from [102] considering two main
categories.

Algorithmic bias This bias is not present in the input data and is added by the algorithm. The algorithmic
design choices, such as use of certain optimization functions, regularizations, choices in applying regression
models on the data as a whole or considering subgroups, and the general use of statistically biased estimators
in algorithms, can all contribute to biased algorithmic decisions that can bias the outcome of the algorithms. A
such well-known and simple bias is to estimate the variance of a Gaussian distribution with the (uncorrected)
empirical variance, which is a biased estimator of the variance.

Evaluation bias This bias occurs during the algorithm evaluation and happens when an inappropriate process
is used for model evaluation (bias present in dataset used for evaluation, inappropriate evaluation metrics,
results insignificant, etc.).

Others bias Some others bias exists like user-interaction bias, emergent bias and popularity bias, that will
not be described further in this document.
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3.6.1.4 User to Data bias

For the bias coming from the user, we propose the following taxonomy from [102] considering two main cate-
gories.

Historical bias Historical bias is bias that already exists, such as socio-technical problems in the world. It
can infiltrate the data-generation process even given a perfect sampling and feature selection. Historical data
bias occurs when socio-cultural prejudices and beliefs are mirrored into systematic processes. This becomes
particularly challenging when data from historically-biased sources are used to train machine learning models.
For example, if manual decision systems give certain groups of people poor credit ratings, then using this
manually labelled data to train the automatic system, may cause the automatic system to reproduce and even
amplify the original system’s biases. For instance, natural language processing models can mirror and amplify
the existing bias in a large textual dataset and can produced gender-biased analogies like: man is labelled
doctor versus woman is labelled nurse.

Population bias Population bias arises when statistics, demographics, representatives, and user character-
istics are different in the user population of the platform compared to the original target population. For instance,
there is a population bias if we train a predictive maintenance model on data collected on a simplified test-bed
and apply it in the real world.

Others bias Many other forms of user bias can come from this dimension (self-selection bias, social bias,
behavioral bias, temporal bias, content production bias, etc.) but we will not describe them here.

3.6.1.5 Fairness in Federated Learning context

When considering Federated Learning, fairness under the scope of biasing is one of the most important require-
ment. Fairness is associated with the FL server and is related with the way such server is biased (or not) on the
way that it interacts with the FL clients. Bias from the server’s side may result in unfair treatment of clients that
discourages them from actively participating in the learning process and damages the sustainability of the FL
ecosystem. Therefore, the topic of ensuring fairness in FL is attracting a great deal of research interest [103].FL
Fairness can have multiple meanings:

• Performance fairness (also denoted as FL faireness accuracy): encourage a uniform accuracy distribu-
tion across participants. For example, when multiple hospitals collaborate to learn a model predicting
a patient’s response to chemotherapy, such as in [104], we do not want the resulting model to perform
poorly in any of the hospital datasets, even if the overall accuracy is satisfactory.

• Collaboration fairness: its aim is to provide the participants with the higher contribution to the learning
process with higher rewards. This kind of fairness is of interest when the participants are self-interested
or even competitors, like banks or states.

• Model fairness: The classical understanding of fairness, meaning that the trained model has no discrimi-
nation regarding some specific sub-groups or sensitive features.

Here, we focus on the model fairness; in a federated learning process each party trains its local model the
same way it would be trained in centralized machine learning. Thus, all the different kinds of bias described
below also apply to Federated Learning. Furthermore, federated learning approaches face unique challenges,
described in [105] that introduce new sources of bias.
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Data Heterogeneity Each participant has its own dataset and in a real-case scenario, it is likely that each
party’s subgroup of data differs greatly from the overall data composition from all parties involved. Besides,
in cross-device settings, a participant can drop out from the learning process for various reasons (low battery,
poor connection etc). Consequently, the overall and relative data composition may be constantly changing,
affecting how the global model learns bias.

Fusion Algorithms In most Federated Learning approaches, an aggregator incorporates local model updates
of the participants into the global federated model. The aggregation strategy is dictated by a fusion algorithm.
The design of the fusion algorithm influences the bias measured in the final model. For instance, some equally
incorporate the model updates from participants, while other perform a weighted average based on the partici-
pant dataset size etc. Most research on fusion algorithm focuses on improving the model accuracy and robustify
the learning process. They can thus choose to ignore participant replies that are dissimilar from replies by other
participants, a choice which can exclude minority groups.

It is a very difficult challenge, and unsolved to the best of our knowledge, to design a secure, robust, private
and fair fusion algorithm.

Party Selection and Subsampling This challenge does not affect the cross-silo setting, but the cross-device
settings, where only a small subset of the participants are chosen at each iteration to collaborate for the learning
process [54]. For example, consider a scenario where each participant is a cell phone and a company wants to
train a model to improve the user experience on its application. Then, if the participant selection is performed
using the network connectivity, people living in the slower networks regions may be represented at dispropor-
tionately lower rates. Inclusion in the learning process is here correlated with a socioeconomic status, thus it is
a systemic source of bias.

3.6.1.6 Bias Sources Overview

In Figure 2, we provide an overview of possible bias sources and where Bias can occur in a ML/DL setting. The
different steps are:

• Real-life phenomenon: Phenomenon that we try to model;

• Business knowledge: Skills, knowledge, experiences, capabilities, insight about the phenomenon that we
want to study;

• Experimental protocol: Translation of the business knowledge in terms of methodologies that we will follow
to model the phenomenon (how many instances we need to have significant results, how we validate
results, etc.);

• Data collection: Data gathering from the real life phenomenon according the experimental protocol;

• Data Understanding: Understanding of the data, for instance through a descriptive analysis, a data quality
assessment, etc.;

• Data preparation: Feature engineering;

• Modeling: Modeling of the phenomenon with statistical, Machine Learning, Deep Learning, physical, etc.
models;

• Evaluation: Verification of model accuracy, the respect of the model’s assumptions, etc.;

• Result valorization: Extraction of important information from the modeling, plots, code packaging, etc.;

• Model deployment: Model and code deployment.
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Figure 2 – Bias sources in ML/DL settings.

3.6.2 Bias measurement

3.6.2.1 Discrimination metrics

This paragraph of the deliverable, we focus on how to quantify bias of a given dataset by defining and analyzing
the metrics to be adopte for bias assessment.To simplify the analysis, we use as an example a binary classi-
fication task with binary sensitive dataset attributes. There is no difficulty in extending these metrics to more
complex cases (for example, a multi-label classification task, with a set of categorical sensitive features) at the
cost of more complex equations. In this paragraph, we only aim to give the reader an understanding of metrics,
following the IBM tutorial on fairness [106]. In the following deliverables (WP2 and WP3 related deliverables),
we will describe these metrics more thoroughly and specifically to the SECURED use-case needs.

Group-discrimination metrics Group metrics aim to quantify how similar or different are the outputs of two
distinct groups of individuals who differ by their sensitive attribute.

Base rate metrics

Initially two base rate metrics are presented, that rely on the predicted outcome:

• Disparate impact, that compares the percentage of favorable outcomes for a monitored group to the
percentage of favorable outcomes for a reference group. The ratio value should be close to 1, the closer
it is to 1, the fairer the model. If the value is below 1, then the privileged group has a benefit, if the value
is above 1, then there is a benefit for the unprivileged group.

• Statistical-parity difference, also called demographic parity, it calculates the difference in the ratio of
favorable outcomes between monitored groups and reference groups. The ideal value for this metric is
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0; if it is below 0, it implies a benefit for the privileged group, if it is above 0, it implies a benefit for the
unprivileged group.

Group-accuracy and group-calibration metrics

We now present two other group metrics that are based on the predicted and actual outcomes.

• Equal-opportunity difference, it calculates the difference of true positive rates between the unprivileged
and the privileged groups. By true positive rates we mean the ratio of the number of true positives on the
number of actual positives for a given group. The ideal value for this metric is 0, if it is below it implies
higher benefit for the privileged group, if it is above it implies higher benefit for the unprivileged group.

• Equalized odds, its goal is to ensure a ML model performs equally well for different groups. It is stricter
than statistical parity because it requires that the machine learning model’s predictions are not only in-
dependent of sensitive group membership, but that groups have the same false positive rates and true
positive rates.

• Predictive rate parity, based on the idea that the true label should be independent of the sensitive
attribute conditional of the model prediction. It is equivalent to satisfying both the positive predictive parity
and the negative predictive parity that respectively focus positive and negative true label. The positive
predictive value being the ratio of the number of true positive to the number of points that are labeled as
positive by the classifier in that same group. A classifier that respects the positive predictive parity is said
to be well-calibrated.

Individual-discrimination metrics Individual-level discrimination measures how the model handles one in-
dividual comparing to the most similar individuals. It was first proposed by Cynthia Dwork et al. in 2012 in [107].

Impossibility theorem Impossibility Theorem [108] states that no more than one of the three fairness metrics
of statistical parity, predictive parity and equalized odds can hold at the same time for a well-calibrated classifier
and a sensitive attribute capable of introducing machine bias. It becomes possible in two special cases; when
the prevalence of the outcome being predicted is equal across groups, or when a perfectly accurate predictor
is used.

An example of this impossibility theorem, is the Correctional Offender Management Profiling for Alternative
Sanctions (COMPAS) tool and related dataset 7 developed by NorthPointe that was eventually evaluated by
ProPublica, an online news source organization [109]. In this dataset it was found that the COMPAS scores
predicting the likelihood of a defendant committing a crime in the future, were biased against black defendants
when compared to white defendants. Their work is based on the false positive rate (that is part of the equalized
odds metric) and the false negative rate. On the contrary, the creators of the COMPAS scores, NorthPointe,
justify their work by explaining that the have focused on the calibration of the model. In the course ”Fairness and
Algorithms” [110] by Atri Rudra of University of Buffalo, it is explained in detail that according to the impossibility
theorem, ProPublica and NorthPointe have both correct analysis using classical fairness metrics even though
their statements are contradictory.

However, a recent study [111] has shown that by relaxing the conditions, meaning by allowing a small margin-
of-error between metrics, it becomes possible for a model to satisfy in this margin the different Bias/Fairness
metrics described in this subsection simultaneously.

7https://s3.documentcloud.org/documents/2840784/Practitioner-s-Guide-to-COMPAS-Core.pdf
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Others bias measurements Counterfactual fairness was introduced by Russel in 2017 [112]. It provides a
possible way of interpreting the causes of bias. Counterfactual fairness gives us a way to check the possible im-
pact of replacing the sensitive attribute (i.e. attribute affected by biasing) only. It provides a means of explaining
the impact of bias via a causal graph.

A recent fairness metric similar to differential privacy has been introduced by [113]; it represents a more generic
definition of fairness.

Bias measurement in Federated Learning context In a Federated Learning context it is not possible to ac-
cess the whole training dataset. Thus, the different bias metrics can be applied either locally by each participant
or globally but on a test dataset.

3.6.3 Bias mitigation

In Figure 3, the generic pipeline on a ML/DL setup in order to achieve fairness (i.e reduce bias) is presented [114].
An example instantiation of this generic pipeline consists of loading data into a dataset object, transforming it
into a fairer dataset using a fair pre-processing algorithm, learning a classifier from this transformed dataset,
and obtaining predictions from this classifier. Metrics can be calculated on the original, transformed, and pre-
dicted datasets as well as between the transformed and predicted datasets. Many other instantiations are also
possible. In the following subsection, we provide more details on existing approaches loosely following the
Figure 3 pipeline.
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Figure 3 – The fairness pipeline as designed by AIF360 [114].

3.6.3.1 In classical approaches

Pre-processing During Pre-processing the objective is to enhance fairness of models by rectifying training
data. Several methods to achieve this are associated with reweighing the training dataset. With these methods,
we try to generate weights for the training sample to ensure fairness before ML models. Thus, we only change
the weights of each instance, and do not change the features and the label of the instances. The weights
are chosen to mitigate discrimination and aim to satisfy some fairness metrics such as statistical parity (see
[115]). [115] proposes to reweigh the dataset by giving more weight to instance with discriminated sensitives
attributes whose outcome is positive. Other approaches to reweigh the dataset are based on Transfer Learning.
Using Transfer Learning we have a biased labeled training dataset and an unlabeled and unbiased test dataset
acting as a sample bias. For example, in a survey, patients of a given age class can be over-represented in
comparison to the real patients distribution. Here, the training dataset is biased according to the age distribution
and models (and statistics) extracted from this training dataset can reproduce and amplify bias according the
age. They cannot be well generalized when they apply to the test dataset. In the Transfer Learning setting, the
sample bias can be described as an unsupervised domain adaptation problem. To correct this sample bias,
we can use approaches like Kullback–Leibler Importance Estimation Procedure (KLIEP) [116] or Kernel Mean
Matching [117]. These approaches try to find an optimal weighing of the training dataset to match the feature
distribution of the test set. The finding of optimal weights is depended on specific criteria per approach, e.g. for
KLIEP, the algorithm finds the weighing that minimizes the divergence of Kullback-Leibler between the training
and test datasets features distribution. On the other hand, instead of using a weighing dataset, in [115] it is
proposed to sample the dataset with proper data replacements using the optimal weights.

In [115] some others approaches are proposed that potentially can lead to the strong degradation of a dataset.
For example, one of these methods rely on finding the most correlated features within the sensitive features
and remove both sensitive features and these most correlated features. This method does not seem relevant
to SECURED because, among others issues, there are no assurance that bias is indeed removed using it.
Previous experiments showed that it is often more interesting to keep the sensitive attributes in the dataset and
to correct their bias effects instead of removing them. Also, the definition of the correlation itself and the way it is
calculated can complicate the bias removal process (depending on the correlation type eg. a linear correlation
calculated with the Pearson coefficient or a monotone correlation calculated with the Spearman rho, or the rank
correlation measured by the Kendall tau ? etc.). Another approach that is proposed in[115] consists of changing
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the labels of some individual people in the dataset but by doing so, uncontrollable bias is introduced in the data.

Feldman et al. in [118] deal with disparate impact discrimination, they link the disparate impact with the balanced
error rate and show that any outputs with disparate impact can be converted into one where the sensitive
attributes leaks can be predicted with a low balanced rate error. Knowing this, they propose an algorithm to
force the distribution of the sensitive attributes to be close across all protected groups.

Several authors like those in [119], [120], [121] propose to provide a fair representation of the dataset. Theses
approaches aim to find a latent representation that encodes the data while keeping the information of the
sensitive attributes hidden so that any association between sensitive attributes and the labels can be removed.
Also, adversarial networks have been used in a various ways to generate fair datasets that can be used to train
a model [122].

Finally, in [123] a probabilistic formulation of data processing for reducing discrimination according three dimen-
sions is proposed. This is based on controlling discrimination, limiting distortion in individual data samples, and
preserving data utility.

In-processing During In-processing we customize ML/DL algorithms to directly train fair models. Adversarial
network are used to achieve such objective. Louppe et al. in [124] propose an adversarial network to incorporate
systematic uncertainties. They focus on a problem where we want to learn a function that matches a dataset
with labels in presence of some nuisance parameters. For that, they use an adversarial process with a first
network whose objective consists in predicting the label according dataset value. There is a second network
that takes as input the prediction of the first network and predict the nuisance parameter. While the second
network is efficient to predict the nuisance parameter, it penalizes the loss of the first network. The objective
of this adversarial network is that at the end of the training the first network is accurate enough to predict the
dataset labels while its predictions are independent of the nuisance parameters. While in [124] this adversarial
network is employed to avoid nuisance parameters in examples from particle physics, this or similar adversarial
processes can be applied in fairness by considering the sensitive attributes as the nuisance parameter as
discussed in [125], [126], [127]. Moreover, instead of the prediction of the first network (that will allow to work
on base rate metrics), we can provide the first neural network errors. The adversary game can be integrated
directly during the optimization of the network, as described in [128], by detecting neurons with contradictory
optimization directions from accuracy and fairness training goals, and achieving a trade-off by selective dropout.

Another family of approaches rely on adding a penalization according to the direct and indirect effects of the
sensitive attributes on the outcome, like e.g. in [129] and [130] where that modify the classical Random Forest
algorithm [131] is modified by changing the cost function to consider both the impact of the improvement if a
feature is used for a division during one tree growing and the association between the candidate feature and
the sensitive attribute.

Post-processing Post-processing approaches revise the prediction scores of a machine learning model after
training to make predictions fairer. To address the issue, Kamiran et al. in [132] propose the Reject-Option
based Classification method. In this approach, they authors of [132] propose to add a reject option when the
prediction made by the model is too close to the classification boundary. In this case, the consider that the
prediction made for the given instance is uncertain and potentially due to bias. To reduce discrimination, these
rejected instances are labeled either as belonging to the discriminated category or not (labeled in the positive
class if they are in the discriminated category, in the negative class otherwise). In [133] some model predictions
are randomly flipped with probabilities that depends on the original prediction and the sensitive attributes values.
To improve the flipping a randomized threshold optimizer as the one proposed in [134] can be used.
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3.6.3.2 In Federated Learning approaches

Most of the methods described in Section 3.6.3.1 assume that the totality of the training dataset is available,
which is not compatible with data privacy. In a Federated Learning context the different metrics cannot be
obtained for the whole training dataset but only in each subgroup handled by each FL client, assuming each
participant agrees to share their metrics.

Furthermore, recently it has been shown in [135] that biased parties can unintentionally encode their bias in a
small number of model parameters, and throughout the training, they steadily increase the dependence of the
global model on sensitive attributes. The bias of a few parties can propagate through the training and affect the
federated model more than on a centralised model. Thus, pre-processing, in-processing and post-processing
in a FL context need to be redesigned to address the above concerns.

Pre-processing Reweighing is a centralized pre-processing bias mitigation method that attach weight to sam-
ples in the training dataset. In a FL setup, reweighting can be applied locally by each participant or globally,
but this implies that participants agree to share information about the distribution of theit local data. In [136] the
authors show that the local reweighing can significantly reduce the model bias, even under highly imbalanced
data distributions.

Another approach that can be seen as a pre-preprocessing approach is proposed in [137]. Its aim is to train a
PrivGan [138] in a FL setup to then generate synthetic dataset locally by each participant. They show that the
synthetic data generated is less biased than the real dataset without reducing the usability of the dataset for
FL.

In-processing AgnosticFair [139], FedFair [140] and [136], are different approaches that try to mitigate bias
by introducing a fairness constraint into the global loss function.

In [141] the authors propose three different weighted-aggregation techniques in FL to mitigate the bias, based
on the fairness metrics of each client’s model updates. These metrics are evaluated on a test dataset, thus the
reliability of this approach rests on the representativeness of the test dataset.

Besides, the Astraea framework [142] reschedules the training of the clients on the server side, to make the
distribution of the collection of data close to the uniform distribution. The Astraea drawback is that it is based
on the assumption that each client must share information about the distribution of its local data.

Post-processing To the best of our knowledge there is not yet published work on post-processing bias miti-
gation in Federated Learning. This statement is confirmed by a 2021 survey on bias mitigation for FL [143]. As
explained in [143], this type of approach may be adequate for the constraints of FL, since it acts on the final
available federated model, and considers the ML model and the data as a black-box.

3.6.4 Related State-of-the-Art Gaps

Finally, based on the section analysis, in Table 5 some preliminary State-of-the-Art (SoTA) Gaps have been iden-
tified. Note that in the Table, we also provide the SECURED flow associated with the gap (i.e Data, Processing
or both flows) and the related identified components of the preliminary SECURED Architecture described in
Subsection 7.2.

Challenge
Gap ID

Description Flows Related SECURED Component(s)

SoTA-GAP-
15

There are no studies to evaluate
Differential Privacy with data la-
belling attacks on medical data

Data Privacy Preserving AI-trained model
Marketplace (ML/DL/FL modules)
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SoTA-GAP-
16

The Post-processing of bias miti-
gation on a FL context has not be
substantially studied

Data Bias Assessment & Unbiasing ser-
vices and tools

Table 5 – PET ML/DL/FL main State-Of-the-Art Gaps
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4 Secure Multi-Party Computation (SMPC) and Homomorphic
Encryption (HE) for ML/DL Health Applications

4.1 The necessity for Privacy-Enhancing Technologies (PETs) in ML/DL Train-
ing and Inference

This section explores how Privacy-Enhancing Technologies (PETs), and in particular Secure Multi-Party Com-
putation (SMPC) and Homomorphic Encryption (HE), can be used to provide enhanced security properties
to ML/DL where the input(s) and the learning model are held by different parties8. SMPC allows a group of
parties to jointly perform some computation without revealing any of the parties’ inputs, while HE allows an
evaluator to compute some function on encrypted data.

We focus on PETs for health applications and more specifically our focus will be on adding privacy protection to
the computations that are involved in ML: a model is trained by one or more parties, and then later accessed for
inference queries by one or more parties (possibly a completely different set from the training parties). Some
operations performed in the training phase and the inference phase can often differ significantly, and the security
and privacy properties required are very different in each case so it is important to distinguish, where necessary.
The descriptions herein will begin using the simple two-party case where a client provides some input and a
server wants to acquire or holds some DL model, and from there extend to multiple parties on each side of
the computation, i.e., client or server. Much of this section is focused on feed-forward Neural Network (NN)
approaches, however many of the techniques apply to other learning models such as linear/logistic regression:
any important distinctions are emphasized.

For the training phase, a data set is provided as input in order to ‘train’ the DL model, which for the purposes
of this section means fixing the parameters and weights of the function (circuit) that the client(s) and server will
later jointly compute in the inference phase. Ideally the interaction should leak as little as possible about the
underlying data to the server, and in particular if the data comes from multiple sources then the input parties
should not learn the data of the other parties, in addition to hiding as much as possible about the parameters
and weights of the resulting DL model9 from the input party (or parties). This section will use Secure Deep
Learning Training (SDLT) to describe protocols that serve this purpose.

In the simplest case of the inference phase, there is a single client with an input x and a server holding a DL
model that is considered as a function f , where the client wishes to learn f(x). The server wants to keep
as much information about f secret as it possibly can, and the client does not want to reveal anything about
x other than its existence (and perhaps its length). For the remainder of this section, the term Secure Deep
Learning Inference (SDLI) is used for this context10. This section aims to describe what can be protected when
implementing, and explain the trade-offs of efficiency, accuracy, and applicability under the various levels of
achievable privacy. For a more thorough survey of secure inference for NNs, see [147].

A trivial solution to both SDLT and SDLI is for a trusted third party to receive input from the client (and the model
from the server in inference) and run the operation in question, returning the appropriate model/value to the
parties. Essentially, the aim of applying PETs is to emulate this third party as a cryptographic protocol among
the participating parties, while minimizing the trust assumptions.

For the SECURED project, it is necessary to go beyond the simple case of one client and one server, and extend
to multiple parties providing data as input both for training data and in the inference phase, and multiple servers
holding (parts of) the NN. Note that, for inference, it is possible to speed up computation [150] by introducing a

8Note that tools such as differential privacy [144] and trusted execution environments (TEEs) can be used in combination with the PETs
discussed in this section to increase privacy guarantees [145], however such combinations are out of scope. Differential privacy can only
be useful in the training phase for the DL model, since in the inference phase we are only working with a single record (input).

9One can consider a scenario where multiple servers train their own models based on data from the same group of input parties, but
give e.g. additional weighting to their own input data [146]. This more general idea results in different models (circuits) at each server, and
many of the techniques described in this document also cover this case, but for simplicity we describe here a single model as being the
outcome of the training phase.

10Note that alternative terminology for almost identical concepts exists in the literature, for example Secure Neural Network Infer-
ence [147], Secure and Correct Inference [148], and Private DL Inference [149].
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third party that does not participate in the inference interaction between client and server, but sends information
such as correlated randomness (independent of x) to all of the parties. It is necessary to assume that this third
party does not collude with (all of) the server(s), and this party can be realized using hardening techniques such
as a trusted-execution environment or even a distributed protocol.

It is now possible to shift our attention to the goals that the system should achieve and under which conditions
the protocol is regarded as achieving these goals. Independent of the target privacy properties, the setting
needs to consider the capabilities of the adversarial parties. Most works in the literature assume that both client
and server are Honest-but-Curious (HbC), meaning that they will follow the protocol as instructed and attempt
to infer as much information as possible11 using the intermediate values and calculations. A (much) stronger
model is that of malicious (or active) security, allowing a party to misbehave arbitrarily. Some works consider
an HbC server and a malicious client, but most works in this category investigate what is possible when both
client and server are regarded as malicious.

In the healthcare setting where very sensitive data is being provided as input, it is foreseeable that only mali-
cious security will be acceptable in order to guarantee that these data items cannot be leaked by the protocol.
This may even be enforced by privacy regulations or other organisational policies regarding consent for data
sharing and analytics. Malicious security comes in two flavors: malicious-security-with-abort ensures that if a
party misbehaves then the other parties will, with high probability, abort rather than provide output. The second
variant, often called robust security, offers stronger security guarantees and allows the honest players to con-
tinue with the protocol. Robust security requires an honest majority, while malicious-security-with-abort can be
achieved even with n − 1 dishonest parties (where n is the total number of involved parties). Additional tech-
niques and machinery are required to achieve malicious security, making protocols in this setting less efficient
than in the HbC setting. For this reason it is essential to specify early on in the planning process which functions
need to be computed, for training and/or inference, and assess feasibility of maliciously-secure protocols for
these functions.

In the training phase, it is possible to aim for the following secrecy goals:

T1. The input training data is not leaked to the server that constructs the DL model, since it is encrypted
(beyond what can be learned by querying the inference phase), and

T2. Internal values of the DL model (i.e., weights and biases) are not leaked to the client.

In the case where multiple clients provide training data as input, then an additional property is desirable:

T3. The input training data of each client is not leaked to the other input clients.

For the inference phase the following secrecy goals are of interest:

I1. The input to the inference is not leaked to the server(s),
I2. The output of the inference is not leaked to the server(s),
I3. Internal values of the DL model (i.e., weights and biases) are not leaked to the client.

Most approaches aim to achieve these three goals simultaneously. Some works attempt to provide an additional
property:

I4. The architecture of the DL model (e.g. number, types and sizes of layers of the NN) is not leaked to the
client.

Independent of any techniques used to provide SDLT/SDLI, it may be possible for a server to infer information
about the training data or for the client to infer information about the model simply by observing input-output
pairs (for example via a model extraction attack [88, 151], a model inversion attack [85], or a membership
inference attack [86, 152]), making T1 and I4 difficult to formalize and realize in practice; see Section 3.3.3 for
a discussion of these attacks.

Any approach realizing SDLI needs to be either interactive, where parties communicate in phases corresponding

11All definitions of security for SMPC are with respect to information that is not trivially leaked by the protocol. Consider a multi-party
average protocol: each party provides an integer as input and at the end all parties learn the average of their inputs. The two-party version
of this protocol is not even a candidate to be performed using SMPC, since the output and one input trivially reveals the other input. In a
privacy-preserving auction, the bids that do not win are usually kept secret but it is expected that the winning bid value would be revealed.
Our focus on deep learning which will mostly allow us to sidestep these discussions.
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to each layer of the NN, or non-interactive, where communication only happens at the beginning and end of
the protocol. Clearly, the interactive approaches reveal the number and type of layers in the NN which violates
security property I4 above, and additionally the potentially large number of rounds of communication may be
problematic in some applications. On the other hand, doing the layers stepwise can enable significant speedups
in computation time as special-purpose functionalities, can be used in these layers; for example, the non-linear
activations can be replaced with polynomial approximations. Choosing which approach is better is clearly
application-specific.

Many approaches to SDLI (and indeed SMPC in general) employ an "offline" pre-processing phase that is
independent of the inputs of the parties, with the goal of speeding up the inference requests in the "online"
phase [153, 154, 150, 155, 156]. This is only feasible if the client and server participation patterns are known,
and idle time can be efficiently allocated to performing the pre-processing. Again the choice to use this approach
is application-specific.

Before specific techniques for SDLT and SDLI can be introduced, it is prudent to briefly describe some techni-
cal challenges that are present throughout the rest of this section. The first is data representation and efficient
conversion: training data and DL weights are often decimal values while the SMPC approaches operate on
some ring 12, usually Z2k . This requires efficient techniques for acquiring values in the correct representation,
and much work has covered this challenge in the two-party [157] and the three-party setting [158]. Perform-
ing operations like stochastic gradient descent requires careful selection of k to define the ring, to ensure that
accuracy is not sacrificed. In the inference phase it will be necessary for the parties to jointly compute some
function f and the efficiency will be decided by the (multiplicative) circuit depth of f . This means that tech-
niques are needed for representing the non-arithmetic operations such as non-linear activation functions and
piecewise polynomial functions in a way that can be handled by the SMPC/HE protocol while again wanting
to retain accuracy. Some of the software tools that are detailed later in this section only support a subset of
popular activation functions. As a general rule, techniques for SDLI based solely on HE will usually not support
non-linear activation functions and require the client to perform them in the clear (this is not always the case,
e.g. [159]), while techniques solely built on SMPC (with a single server) will be able to support these functions
but will leak the model architecture: this trade-off can be avoided by using a hybrid model that incorporates
both approaches [160, 155, 149]. Past literature can be split into frameworks that cover both training and in-
ference [158, 156], inference protocols that assume a pre-trained model [161], and those which transform a
pre-trained model to make it more appropriate for SDLI [162, 163, 164, 155].

A fundamental building block for many SMPC-based protocols is Oblivious Transfer (OT) [165]. In the simplest
case, party A provides two messages m0,m1 as input, party B provides a selection bit b, and at the end of
the protocol B learns mb while A learns nothing. This can be generalized to more than two messages, and
Oblivious Transfer Extension (OTe) [166] enables a large batch of OTs to be performed at a cost far cheaper
than individual computation. Another important variant is Random Oblivious Transfer (ROT) [167], where the
selection bit b is not provided as input but is generated at random by the protocol: the output of ROT is two
correlated pairs of bits (m0,m1) and (b,mb). Given a ROT instance the two parties can compute OT using just
three bits of communication.

Note that in some healthcare applications, a prediction algorithm is trained on private data and then the resulting
algorithm is made public as part of a public health initiative [168]. In this case, SMPC/HE techniques are only of
assistance in the training phase, and can be used to combine multiple input data sets. For the inference phase,
a user can input data using a web/app interface13 and retrieve their result without any data being transmitted
over the internet. If this user wishes to keep their input (potentially containing sensitive details about their own
health situation) secret from their web browser, they could run the public algorithm locally on their own machine
if they have the requisite technical knowledge.

12A ring is a set that fully supports two binary operations satisfying properties analogous to those of addition and multiplication of integers.
13For example, the QRisk3 predictor for heart attacks and strokes, trained on 35 million UK NHS patients: https://qrisk.org/.
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4.2 Techniques for Privacy Enhancing

Three techniques with different features will be detailed in the following; their most important aspects are sum-
marized in Table 6. For the number of computing parties, the client may or may not participate as a computing
party in the secret sharing and garbled circuit contexts. As we will see later, given these various features and
the complexity of the functions present in DL applications, it is nearly always preferable to use a combination
of techniques for increased efficiency.

Garbled Circuits (4.2.1) Secret Sharing (4.2.2) Homomorphic Encryption (4.2.3)
Circuit Representation boolean arithmetic (Fp) polynomial
# Computing Parties n ≥ 2 n ≥ 2 1 server
Round Complexity constant circuit depth 1
Communication Complexity 256 bits per AND gate (n = 2) 2n log p bits per mult. gate circuit independent
Table 6 – Comparison of PETs for secure computation of a single function between one client holding an input and one or more servers holding the function.

4.2.1 Garbled-Circuit Approaches

The first class of protocols is SMPC based on circuit garbling, as introduced by Yao [169]. For any efficiently
computable function that can be expressed as a Boolean circuit of only AND and XOR gates, this function
can be transformed into a Garbled Circuit (GC) that the parties in the protocol jointly compute to minimize the
leakage of inputs. In the SDLI setting this means that the structure of the NN is known to both parties (and thus
goal I4 from above is not met): the client’s secret input is its inference input and the server’s input is the set
of weights and parameters for the NN: this allows the encoding of the entire NN as a Boolean circuit when the
bitlength of all input values is fixed. Note however that this is not the only way to use GCs in SDLI: when using
a mixed-protocol approach that uses GCs and other tools for each part of the model, for non-linear layers it is
possible to reverse the roles [155].

The number of communication rounds is constant and independent of the function being computed, and follows
two phases: an input-independent circuit garbling phase allows the parties to construct the garbled circuit, and
the evaluation phase. In this second phase the gates of the circuit can be computed in parallel, and in particular
for XOR gates no communication is required: using GCs in SDLI needs to consider the multiplicative size of
the circuit only.

While Yao only considered two parties, this was extended to the multi-party setting by Beaver, Micali and Ro-
gaway [170]. The intuition here is that the computing parties perform a distributed generation of the garbled
circuit, so that no single party (or acceptable size subset of the parties) knows the label assignment, and this
distribution generation can be done in parallel for all circuit gates. The first demonstration of the feasibility of
using Yao’s GCs was given in the Fairplay system [171].

A crucial component of GC approaches is OT. Intuitively, the garbler will prepare a representation of each of the
Boolean circuit’s gates for all possibilities, and the evaluator will then traverse the gates and ’blindly’ evaluate
according to permuted truth tables. Here, OT comes in: the garbler acts as the sender of the (encrypted) wire
labels corresponding to 0 and 1. Another major efficiency improvement can be made by using a fixed-key
blockcipher during the gate garbling process [172].

The computational costs for both the garbler and evaluator are dominated by calls to the encryption function,
which is usually an established cipher like Advanced Encryption Standard (AES) in some pre-agreed mode
of operation. As we will see in Section 4.5.2, it is often beneficial to use symmetric encryption schemes that
are designed to have low-depth circuit representation instead of AES: see Section 4.5.2 for a more detailed
discussion of this issue. For SDLI the circuit representation of the model may be enormous, so automated tools
can be used to optimize (each part of) the circuit to minimize the number of non-XOR gates [173, 163]. When
treating the DL model as a combination of components, GCs are particularly useful for activation functions such
as ReLU, MaxPool and (an approximation of) Sigmoid. This means that mixed protocol approaches may only
use GCs for activation functions, and secret sharing or homomorphic encryption for other operations.
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4.2.2 Secret-Sharing Approaches

In Additive Secret Sharing (A-SS), a party can distribute a secret value in two or more shares, where each
individual share reveals no information. To reconstruct, all or some sufficient number (threshold) of the shares
are needed. This idea can be used to compute boolean or arithmetic circuits, where the computing parties
simply process the circuit gate-by-gate with their blinded inputs. Similarly to the GC approach, ADD gates (or
XOR in F2) can be done locally: both parties apply the operation to their own shares. An important enabler
of the A-SS technique is doing non-linear gates (multiplication in larger rings) with the help of either random
oblivious transfer (correlations) for boolean circuits, or multiplication triples (so-called Beaver triples) [174] which
are shares of values a, b, c such that c = a · b for arithmetic circuits14. Since each triple acts as a one-time pad
for each multiplication gate, they are “used up” in the online evaluation of a gate and a sufficient number of
triples must be produced in advance. This allows shares of multiplication inputs to be produced in the input-
independent pre-processing ("offline") phase at a time that is convenient to both parties, giving a reduced online
communication cost. Finally, after all the gates are computed, the server party in two-party SDLI will transmit
its output share to the client (the parties would exchange their output shares if both parties should get output).

Many modern approaches that use A-SS employ the GMW protocol [175] as the core framework, and im-
part many optimizations and improvements. An alternative to A-SS is a class of protocols with information-
theoretic security, avoiding public-key primitives such as OT (and their computational assumptions) altogether:
BGW [176] forms the basis for many such schemes. BGW-like schemes require an honest majority of par-
ticipants and usually do not involve a pre-computation phase. Note that ROT can also be used to efficiently
generate Beaver triples [177], while an alternative approach for generation is use of HE. In order to achieve
malicious security, the parties require Beaver triples where shares can be opened reliably, and modern works
generally make use of Message Authentication Codes (MACs) that operate in the appropriate field with certain
special properties. BDOZ [178] and the TinyOT improvement [179] (that uses OTe) use one-time information-
theoretic MACs to generate authenticated bits, then use an interactive protocol to turn these into Beaver triples:
the local storage scales linearly with the number of parties. A way to avoid this linear scaling was introduced in
the SPDZ protocol [180], and it was later shown how to improve the triple generation using OTe [181]. ISO/IEC
are in the process of producing a standards document for secret sharing-based SMPC [182].

Schemes that use A-SS can support an arbitrary number of parties, but for the SDLI setting it might be difficult
to find three or more mutually distrusting computing parties, leaving two servers and thus ruling out use of
BGW-like schemes that require an honest majority. In general it could be that the client is one of the n ≥ 2

computing parties, however this would reveal the weights and parameters of the model (i.e., leaking much more
than just the model architecture) to the client. A more common usage scenario is for n non-colluding servers
to hold the joint model, and for the client to share their input to those servers: this has the added benefit of low
computational and communication complexity for the client.

For SDLI, additions can be done locally on shares so the parties only interact to compute for multiplications
in the linear layers. In each of these non-linear layers, the communication cost is proportional to the number
of multiplications being performed but no generic and efficient technique is known: many different approaches
have been used in the literature with different trade-offs.

14To see how this works, if two or more parties want to multiply secret-shared values x and y, they each reveal their own shares of x− a
and y − b and then compute (their share) [x · y] = (y − b) · [a] + (x− a) · [b] + [c] + (x− a) · (y − b).
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4.2.3 Homomorphic-Encryption Approaches

Homomorphic Encryption (HE) is a category of encryption schemes that allows certain functions to be evaluated
on data while it is still in its encrypted state. This allows a user to encrypt their plaintext data, send the ciphertexts
to some untrusted server, and then query the server for functions15 of the encrypted data, all in a way that leaks
nothing about the plaintexts to the cloud. To illustrate, given a homomorphic encryption procedure Enc that
supports addition, Enc(2) ⊙ Enc(5) would yield Enc(7), for some operation ⊙ which would be the equivalent
of the plaintext addition in the ciphertext space. Unlike traditional encryption schemes, which do not give any
guarantee about the meaning of the sum of ciphertexts, HE promises, amongst others, to perform ML—most
often inference (SDLI), but training (SDLT) is also possible—directly on the encrypted data. To emphasize,
in this situation the ML model owner does not need to decrypt the encrypted data it is fed before performing
inference or training: confidentiality of the user’s data is preserved even if the server behaves maliciously16. A
more formal treatment of the syntax of HE is not necessary for the purposes of this report, but can be found in
the Homomorphic Encryption Standard document [183], a community-led effort to define schemes and security
properties in the HE space.

HE schemes, of which the most popular ones are given in Table 7, mainly fall under one of the following
three branches [184, 185]. Firstly, Partially Homomorphic Encryption (PHE) schemes only allow one type of
function (i.e. gate type) to be evaluated, albeit an arbitrary number of times17. In practice, the function is either
addition or multiplication. PHE may be sufficient in several application scenarios. One such example is e-voting,
where the tallying (counting) of votes normally only requires addition to be supported, as shown by schemes
that rely on PHE for security and anonymity [187, 188]. Other examples include similarity testing [189], and
membership queries [190]. Secondly, Somewhat Homomorphic Encryption (SWHE) schemes allow more types
of functions to be supported, and might for instance also allow branching on the encrypted data, but the number
of evaluations is bounded. Applications include secure pattern-matching [191] private database querying [192],
and steganography [193]. Finally, the holy grail is promised by Fully Homomorphic Encryption (FHE) schemes
that allow any arbitrary function to be evaluated for any arbitrary number of times. FHE has proven, for example,
to be capable of securing complex data-centric applications, including databases [194]. In the remainder we
will purely focus on FHE, as the complexity of ML algorithms demands this.

In general, an FHE scheme, of which the first one was lattice-based and proposed by Gentry [204], depends
on the addition of randomness—called noise or error—to the ciphertext. Each HE evaluation also adds noise
to the ciphertext (growing slowly for addition, and very quickly for multiplication). However, there is an upper
bound on the amount of noise tolerated. If that bound is exceeded, decryption will result in failure. Gentry’s
breakthrough scheme [204] consisted of the following generic blueprint:

1. Start with a Somewhat Homomorphic Encryption (SWHE) scheme that can evaluate low-degree multi-
variate polynomials homomorphically,

2. “Squash” the decryption circuit of the scheme, by transforming into a new scheme with equivalent homo-
morphic capabilities with a simpler decryption circuit,

3. Add a bootstrapping procedure that “refreshes” a ciphertext by homomorphically evaluating the decryption
function on it with an encrypted secret key.

The result of this procedure is a Leveled Fully Homomorphic Encryption (LFHE) scheme where the parameters
can depend on the depth of the circuits that the scheme can evaluate, but not the size of these circuits. To
get from here to a fully-fledged FHE scheme it is necessary to introduce an additional assumption of circular

15These functions could be i) known to both user and server, ii) a secret of the server that is not known to the user, for example a
proprietary machine learning model, or iii) a secret of the user that is not known to the server, in which case the function must be sent in
encrypted form to the server by the user.

16Note that a server could attempt to perform a different function on the ciphertexts than the one intended by the user, in order to save
computation steps or just to manipulate the result. Avoiding this issue is possible (along with the result, the server sends a proof that in
essence binds the function to the result) however a discussion is beyond the scope of this document: in general we will assume that the
server is essentially Honest-but-Curious (HbC).

17We demonstrate how additively homomorphic encryption works by example, using the Paillier encryption scheme [186]. To encrypt a
message m the algorithm is Enc(m) = gmrN mod N2 where g is a generator, r is a randomly chosen integer in {0, . . . , N − 1} and N
(the public key) is a product of two large primes. The operator ⊙ here that can be applied to ciphertexts is multiplication modulo N2, and
using our example from earlier: Enc(2) · Enc(5) = g2rN1 g5rN2 mod N2 = g(2+5)(r1r2)N , which is an encryption of 7 under randomness
r1r2.
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Scheme Year Key features Security
ElGamal [195] 1984 multiplication Discrete logarithm
Paillier [186] 1999 addition Composite residuosity
DGHV [196] 2010 addition, multiplication LWE
CMNT [197] 2011 addition, multiplication LWE
BGV [198] 2011 addition, multiplication, bootstrap LWE
BFV [199, 200] 2012 addition, multiplication, bootstrap LWE
GSW [201] 2013 addition, multiplication, bootstrap LWE
TFHE [202] 2017 addition, multiplication, bootstrap TLWE
CKKS [203] 2017 addition, multiplication, bootstrap, R RLWE

Table 7 – Widely used homomorphic encryption schemes. Note that Fan and Vercauteren [199] gave a ring variant of the scale-invariant LWE scheme
proposed by Brakerski [200] and consequently this version is commonly referred to as the BFV scheme.

security: encrypting the LFHE secret key under its own public key does not leak any information about the
secret key. In general, bootstrapping is a very expensive procedure since it requires homomorphic evaluation
of what is often a complex function.

Later works demonstrated how LFHE schemes can be designed directly, without bootstrapping, which has seen
utility given that in many cases it is straightforward to bound the depth of the circuits that are expected to be
executed. BGV, BFV and CKKS [203] are examples of LFHE schemes.

A separate line of work has looked to work in particular domains where bootstrapping can be made more
efficient. TFHE [202, 205] and FHEW [206] are examples of FHE schemes supporting bootstrapping.

4.3 Existing Software Libraries/tools for PETs

4.3.1 Libraries for FHE

As academic and commercial interest in FHE has grown over the years, many open source libraries have
been developed and released, such as Microsoft’s SEAL [207], IBM’s HElib [208], IARPA’s PALISADE [209]
which is now OpenFHE, etc. The libraries support variants of HE schemes that are have become established
in the literature, and whose security has not been broken in over a decade of FHE literature. Some of the HE
libraries also allow exponentiation, square, signing, and therefore subtraction. We also indicate which libraries
support Single-Instruction-Multiple-Data (SIMD) operations. We briefly discuss the main libraries below, and
we summarize them in Table 8.

Library Developed By Schemes Operations Languages
SEAL Microsoft BFV, BGV, CKKS Addition, Multiplication, Rotation,

Matrix, SIMD
C++

HElib IBM BFV, BGV, CKKS Addition, Multiplication, SIMD C++, Python
PALISADE IARPA BGV, BFV Addition, Multiplication, Rotation,

Comparison, SIMD
C++, Python, Java

TenSEAL OpenMined SEAL-based PyTorch Integration Python
OpenFHE Duality Tech PALISADE-based Addition, Multiplication, Compar-

ison, Inner Product, SIMD
C++, Python

TFHE Various TFHE Addition, Multiplication C++, Python
TFHE-rs Zama TFHE Addition, Multiplication C++, Python, Rust

Table 8 – Comparison of HE Open Source Libraries

The many homomorphic encryption libraries available offer different features, implementations, and supported
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functionalities. The libraries differ in terms of their development teams, supported encryption schemes, sup-
ported operations, optimization techniques, and ease of use. No clear winner or de facto standard has so far
emerged, and the libraries have to be evaluated depending on the specific application requirements and use
case, to choose the one that best fits the requirements.

SEAL [207] (Simple Encrypted Arithmetic Library) is a MIT-licensed library that supports a wide range of math-
ematical operations, including addition, multiplication, rotation, and more developed by Microsoft Research. It
offers optimized performance with SIMD and serialization, and is designed to work well with large-scale compu-
tations, while enabling efficient computation on large sets of data. It currently supports the BFV, BGV and CKKS
schemes. SEAL also provides a list of secure parameter sets that have been put to test in the LWE estimator
library from Albrecht et al. [210].

HElib [208] is a library developed by IBM, and released under Apache License v2.0. It offers powerful func-
tionalities for homomorphic operations such as addition, multiplication, and the GHS bootstrapping algorithm.
While most of its features resemble SEAL, it is aimed at providing a simpler in construction. The performace of
SEAL and HElib has been compared in the literature, showing that each library may perform better than the
other depending on the parameters [211].

PALISADE [209] is a library developed with the support of IARPA, released under the 2-clause BSD open-source
license. It supports both HE and FHE schemes and provides multiple encryption schemes, including BGV
and BFV. OpenFHE [212] is an open-source library created on the basis of PALISADE, merged with some capa-
bilities of HElib and HEAAN [203] by CryptoLab, with the aim of making homomorphic encryption more accessible
to a broader audience by categorizing basic to advanced FHE and lattice-based implementations. OpenFHE of-
fers functionalities for basic arithmetic operations, as well as more advanced operations like comparison and
inner product. Additionally, OpenFHE includes functionalities for distributed, multi-party computing scenarios and
proxy re-encryption.

TFHE [205, 213] (Fast Fully Homomorphic Encryption over the Torus) is a library that focuses on optimizing the
performance of fully homomorphic encryption schemes, released under the Apache License version 2.0. It
provides an implementation of the FHE-over-the-Torus Homomorphic Encryption Scheme (TFHE), which is an
extension of the GSW FHE scheme with improvements suggested in a line of works [206, 202, 205]. The library
offers low-level operations. The TFHE library has been superseded by TFHE-rs [214], described below.

TenSEAL [215] is an open-source (Apache License version 2.0) library developed by OpenMined for secure
machine learning using HE. It is built on top of the Microsoft SEAL library and provides an easy-to-use interface
and high-level abstractions because of the Python front-end for working with homomorphic computations. It
integrates well with PyTorch and can be used for privacy-preserving machine learning tasks.

TFHE-rs [214], formerly Concrete18 is a pure Rust implementation of TFHE for boolean and integer arithmetics
over encrypted data by Zama. It is released under the BSD 3-Clause Clear License. The aim of TFHE-rs is
to have a stable, high-performance library supporting the advanced features of TFHE. Concrete (Zama TFHE
Compiler) has instead been redeveloped as a compiler for TFHE, that converts Python programs into FHE
equivalents.

4.3.2 Libraries for SMPC: protocols and sub-components

Many of the academic works that have performed privacy-preserving DL have used existing software libraries
in constructing their complete tools. We will now detail some of the common sub-components for oblivious
transfer and circuit garbling, and then briefly mention fully-fledged SMPC protocol frameworks.

For oblivious transfer, LibOTe [216] provides a framework for implementation of 14 OT protocols from the aca-
demic literature with various efficiency and security properties. The repository has 95 forks and is regularly
updated, and it has been used in at least three SDLI papers [158, 160, 164].

A Rust implementation of circuit garbling is given in fancy-garbling, which is now incorporated into the swanky
suite by Galois Inc. [217]. fancy-garbling is used in the Delphi tool [155] and Muse [151]. Gazelle uses an

18https://www.zama.ai/post/announcing-concrete-v1-0-0
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extension of the justgarble software [218] which was developed by the team behind the fixed-key blockcipher
paper [172].

The ABY software framework [219], that underpins the ABY publication [157], offers numerous speedups when
converting data between arithmetic, binary, and Yao (garbled circuit) representation for assisting various tasks
in two-party computation. It has been used as a building block library for at least four SDLI publications [154,
150, 220, 149].

Going one abstraction level higher, MP-SPDZ [221] is a SMPC software framework that provides a unified tool
for benchmarking a large number of SMPC protocols, in various security models, and has developed from an
improved version [222] of the SPDZ protocol [180]. It has been used in the Muse protocol [151] and recent
work on convolutions [223]. The SCALE-MAMBA software tool [224], which as of June 2022 is no longer being
maintained, provides an alternative for implementing various SMPC protocols in the malicious security setting.
Like MP-SPDZ, it is also a fork of the original SPDZ-2 software.

4.4 Software and Libraries for Privacy-Preserving DL

4.4.1 HE only

CryptoNets [162], published in 2016, was the first attempt to apply FHE on Neural Networks (NNs). A key
assumption here is that FHE is only applied to the process of inference, not training. While it is technically
possible, literature concludes that also performing the training process in an encrypted state incurs too much
overhead. Besides, this allows pre-existing models that have already been trained to be adapted for inference
on encrypted data, ensuring that the training phase does not need to be repeated. CryptoNets employs a
leveled HE scheme implemented in Microsoft’s SEAL [207] library and shows that the same accuracy can be
achieved in the encrypted state. The CryptoNets solution has various optimizations in order to cope with the
complexity of HE and the constraining of introduced noise at small levels. CryptoNets operations are defined
on the ring Rn

q := Zq[x]/(x
n +1) thus it is defined using the q, n and t parameters (where t is the plaintext input

ring characteristic i.e., Rn
t := Zt[x]/(x

n + 1)). To keep noise at at a manageable level the authors propose the
use of large t values which practically mean that an input message used in the scheme will be encoded as a
polynomial of degree n where each coefficient is modulo a large t. To reduce the complexity of the computations
using large t the authors propose the use of Chinese Remainder Theorem (CRT) by practically "breaking" t into
relatively prime moduli (in CryptoNets t1 and t2). Then the computations, i.e the encoding of the message, can
be done in parallel for t1 and t2 without any change. In CryptoNets the authors also take into account the fact
that when encoding neural network atomic constructs that are real numbers into atomic constructs compatible
with HE that are polynomials in Rn

t there is some loss of accuracy in the process. This in CryptoNets is handled
by converting real numbers into fixed precision numbers and then use their binary representation to convert
them into a polynomial with the coefficients given by the binary expansion. However, the paper also proposed
another approach that can take place after real number to fixed point conversion. In this case, since t is a
very large integer, the fixed point number can be included as a single coefficient on an n degree polynomial
of the Rn

t ring (a single scalar). To remedy with the fact that operations done on such polynomial practically
are only relevant to a single coefficient (one scalar) the authors suggest to take advantage of the all polynomial
coefficients but splitting this single scalar into multiple ones using CRT. In a way, the above process can exploit
parallel computation offered by SIMD operations offered in modern processors. Finally, the CryptoNets solution
use optimal HE scheme parameter selection that will allow the best fit of the scheme to the NN at hand. These
parameters are the values used are t1 = 1099511922689 and t2 = 1099512004609 moduli for the CRT of t,
q = 2383 − 233 + 1 and n = 8192. Note, that CryptoNets assumes that there is a ML as a service scenario
where a client is encrypting the input data, then sends them to a NN on a server offering inference as a service,
the server performed inference on the encrypted data and returns the encrypted result to the client which then
can decrypt them. The CryptoNets is tested using the MNIST dataset19. The NN linear operations are done
using the adopted HE scheme while the non-linear ones i.e., Mean Pooling layer and Square activation layer,
are done using linear approximations. The Sigmoid Activation function existing in the MNIST NN is omitted.

19https://en.wikipedia.org/wiki/MNIST_database
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Several works since CryptoNets have aimed at improving the performance and/or scalability for inference on HE-
encrypted data. LoLa [225], short for Low-Latency CryptoNets, tries to enhance CryptoNets by treating each
layer as an encrypted message instead of each node. The results indicate a speedup of 11 times and the RAM
usage for the CIFAR-10 dataset dropped from 100s of GBs to only a few. CryptoDL [226] employs leveled HE as
implemented as HElib and states that in their case only addition and multiplication are the allowed mathematical
operations. Therefore, the authors propose alternative activation functions restricted to those mathematical
operations and show that accuracy is still on par while being faster than previous work on secure ML inference.
Faster CryptoNets [227] proposes several more efficient approximations of the activation functions to make
them HE-friendly. Additionally, they adapt the pruning and quantization process to optimize the compression
of the model’s size to make it a better fit for HE. They employed BFV-RNS as the HE scheme. Alternatively,
TAPAS [228] proposes to switch to a different kind of NNs called Binary Neural Networks (BNNs), which is
more suitable for the TFHE scheme. However, the limitations of BNNs compared to traditional NNs are not
discussed by the authors, although they do plan to support in future work non-binary NNs. FHE-DiNN [229] is
less restrictive, as they switch to Discretized Neural Networks (DiNNs) which allowsZ for the signals and weights
instead of just {−1, 1}. Moreover, each neuron is bootstrapped, ensuring that the homomorphic evaluation of a
neuron’s output is not restricted by the size of the NN anymore.

Finally, CHET [230] takes a different approach. They authors observed that creating an FHE application, i.e.
adapting software to work on FHE-encrypted ciphertext rather than the plaintexts, is a painful process. There
is lots of complex mathematics involved to finetune the parameters HE schemes offer, which is not necessarily
part of the toolbox of the average software engineer. To accelerate adoption, CHET proposes a domain-specific
language to specify the tensor circuits in that need to be evaluated in an encrypted fashion. CHET’s compiler
performs some kind of parameter exploration to optimize the parameter values automatically for the given circuit.
They evaluated their approach on an industry-grade medical imaging model. While a naive implementation
would require 18 hours of runtime per image, and could be hand-tuned by an expert to 45 minutes per image,
CHET managed to reduce this even further to just 5 minutes.

4.4.2 SMPC only

Chameleon [150] extends the Secure Two-Party Computation (2PC) model with a semi-honest third party in
the offline phase with the task to provide correlated randomness, enabling performance optimizations that this
framework exploits. In addition, the framework adds support for signed fixed-point arithmetic. Amongst others,
the authors have evaluated and compared their work with MiniONN [154] (see below) in two configurations.
In the configuration offering the same accuracy as Chameleon [150] on MINST, the total communication is
reduced from 657.5 MB to 10.5 MB and the total training time from 9.32 s to 2.24 s. When MiniONN [154] is
configured such that the accuracy is 1.4 percent point less, MiniONN is faster (1.04 s opposed to 2.24 s), but
the communication overhead is still larger: 15.8 MB versus 10.5 MB.

ABY3 [158] fully extends to a three-server model, or Secure Three-Party Computation (3PC), where at most
one server may be malicious. Note that this is a stronger adversarial model than the semi-honest one, as
now the adversary may deviate from the protocol. Switching to the 3PC model enables optimizations, such
as a significant reduction of the communication overhead for vectorized operations. Fixed-point multiplication
is also supported. With the same neural network configuration as SecureML [153], the online time is reduced
from 193 ms to 3 ms and the communication overhead from 120.5 MB to merely 0.5 MB.

EzPC [220] is a 2PC framework that follows a similar approach to Chet [230] that generates 2PC protocols from
higher-level programs, with EMP [231] and ABY [219] as the underlying frameworks. The contribution in this work
is to provide an automated method of choosing whether arithmetic or boolean circuits are most appropriate for
the program that is provided as input, while maintaining the security properties of the underlying 2PC protocols.

In XONN [164] the authors assume a single server and used binary neural networks, i.e. limiting the weights,
activation values and biases to {−1, 1}, in order to make the (Boolean) circuits that represent the NN simpler
and more SMPC friendly. In particular, multiplications become XNOR gates, which can benefit from the free-
XOR technique. The inputs to the NN are not necessarily binary so two approaches to this first layer are given,
using a dedicated Boolean circuit that can be combined with the other GC layers, and a combination of A-SS
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and OT (thus the GCs start at the second layer). If the first option is used then the entire system is based
on garbled circuits and thus the evaluation phase is entirely non-interactive. Further, this approach allows the
servers to keep the architecture of the DL model hidden: this would not be possible in the single server setting.
In the training phase, the number of neurons in each layer must be increased to compensate for the accuracy
lost by moving to binary weights. This might cause issues when converting existing machine learning tools to
the XONN framework.

ABY2.0 [232] is a framework that targets computation on an ℓ-bit field in a two-party setting, or 2PC. The
adversary is considered to be semi-honest. That is, parties will perform the computation in accordance with
the protocol used, but a party might try to obtain more information from the protocol messages that have been
communicated. To support decimal numbers, fixed-point arithmetic is supported. The framework was evaluated
on neural networks with the same configuration as SecureML [153]. Compared with SecureML [153], the
number of training iterations per minute was increased up to 3.46 times. For inference, runtime was improved
up to 3.3× and throughput even in best-case scenario by a factor 754×.

4.4.3 Hybrid approaches

As discussed earlier on in this section, many of the modern works that we will describe in this section use a
combination of PETs in the process of performing ML tasks.

SecureML [153] employs three-party computation by assuming two servers that do not collude. The idea is that
the two servers compute the desired circuit amongst themselves on shares of the client’s input, for both training
and inference. A pre-processing phase was employed to generate multiplication triples using both HE and OT,
with optimizations for the vectors and matrices that they use to boost efficiency. A-SS was used for the linear
layers, while garbled circuits are used for the non-linear layers. The main theoretical advancements provided
by the paper are an activation function that can be computed using a small garbled circuit, which is essentially
the sum of two ReLU function calls, and the replacement of the softmax function (for the output layer) with a
combination of ReLU functions and the simple operations of addition and division. A large portion of this work
was devoted to efficient linear and logistic regression in the privacy-preserving scenario, while the results on
neural networks are mainly to demonstrate feasibility: this was the first instance of training a neural network
using PETs.

MiniONN [154] assumes the same semi-honest 2PC model as ABY2.0 [232], but focuses specifically on not
changing the training phase of the model. This way, pre-trained models can be transformed without retraining
into oblivious ones, i.e. those where the remote server performing inference cannot infer anything from the
input data. To this end, the authors identified widely used ML operations, such as sigmoid and tanh, and
developed oblivious-friendly counterparts. Compared to SecureML [153] with the MNIST dataset, the accuracy
has increased from 93.1% to 97.6%, the offline latency has been reduced from 4.7s to 0.9s, and the online
latency from 0.18s to 0.14s.

Gazelle [160] continued the trend of identifying the computation- and communication-heavy aspects of NNs
inference and attempting to reduce multiple stages of the workflow. This was effectively the first major work that
used specialized operations for each part of the NN, namely HE for the linear layers and GCs for the activation
functions. The paper introduced a number of optimizations that have become core parts of later literature and
libraries, and uses a Packed Additively Homomorphic Encryption (PAHE) scheme, namely a modified version
of BFV. The idea of PAHE when used here is that it allows packing multiple plaintexts into individual ciphertexts,
and the transition to SIMD means that the Gazelle system never uses the very expensive operation that is homo-
morphic multiplication of ciphertexts (only scalar multiplication, addition and permutation of slots are needed).
The first main contribution is acceleration of permutation support: SIMD homomorphic computation requires
slot rotation, and instead of using a slower prime-order transform the paper suggests to use a power of two for
NTTs. The second major speedup comes from using FHE moduli that are Barrett-friendly [233], again leading
to much faster NTTs. Finally, the paper gives custom linear algebra kernels for fully connected and convolution
NN layers, mapping these layers to homomorphic matrix-vector multiplication/convolution operations.
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Delphi [155] follows the same system setting as Gazelle namely NN inference using a combination of SMPC
and FHE. The core idea of Delphi is to move as many operations as possible to a pre-processing phase that
is independent of the client’s input: the linear layer input by the server (model owner) is known beforehand,
meaning that secret shares of the server’s input can be made (using the BFV PAHE as in Gazelle) and sent in
advance. In addition to reducing communication costs for linear layers in the online phase, the operations that
are performed during the online phase are done over small prime fields and can therefore benefit from CPU
and GPU acceleration. The second contribution is to move away from solely using GCs for activation functions,
and the paper introduces a planner that identifies which activation functions can be replaced with polynomial
approximations (thus gaining great speedups in the online phase) without reducing the accuracy of the system,
and which functions cannot be replaced and should be calculated as is. Computing ResNet-32 requires 60 MB
of communication and 3.8 s in the online phase.

Muse [151] also takes into account malicious parties, but here only malicious clients. In the paper, the authors
argue that servers in general should be more secure than clients. Hence, this should be a safe assumption.
The contribution of this work is twofold, as it firstly proposes an attack on frameworks under the semi-honest
adversarial model demonstrating the practicality of malicious clients breaking the secure protocols. The protocol
employed by Muse [151] is based on Delphi [155]. To protect against malicious clients, Message Authentication
Codes (MACs) are employed. The authors argue that the MACs can be computed and used in the preprocessing
phase. Thus, the online phase has a similar execution time as Delphi. Overall, the performance is slightly
worse when compared to semi-honest alternatives, but the performance is better when compared with prior art
assuming malicious computational parties.

nGraph-HE [234] and nGraph-HE2 [235] extend the Intel DL graph compiler nGraph20 to include a homomorphic
encryption backend, using the SEAL library [207]. In follow-up work, MP2ML additionally incorporates SMPC
components in the privacy-preserving backend via the ABY framework [157]. The main contribution of these
works is to incorporate optimizations automatically while separating privacy-enhancing technology from DL
as much as possible: the privacy-preserving layer has its own instruction set and can perform for example
batch-norm folding and parallel operations via SIMD packing. The works only target inference and not training,
and for the HE-based approaches the non-polynomial activation functions (ReLU, MaxPool) are evaluated in
the clear by the data owner (thus leaking weights and parameters of the model). By incorporating ABY, the
MP2ML framework allows the hiding of the intermediate feature maps, and needs a mechanism for converting
between CKKS [203] and SMPC to keep the activation function operations hidden from the client. Chimera [159]
uses the TFHE scheme [202] to perform ReLU, and other functions are done with BFV/CKKS, enabling the
hiding of non-linear layers (not just weights and parameters, but even the function being computed in these
layers), but at a cost of requiring conversions between the two HE schemes.

CrypTFlow2 [148] is a set of tools that can transform TensorFlow [236] models to a secure implementation.
CrypTFlow2 uses secure two-party computation (2PC) and guarantees that outputs are bit-wise equivalent to
the cleartext model stated in TensorFlow. Specifically, CrypTFlow2 relies on introduced 2PC protocols that
achieve secure comparison and division. It targets inference and it is showcased for prominent deep NNs
that have successfully addressed the ImageNet challenges. CrypTFlow2 focuses on two axes: (1) realistic
deep NNs use ReLU activations, expensive to compute securely; (2) a faithful implementation of secure fixed-
point arithmetic is required to maintain the inference accuracy of a given plaintext model. More specifically,
CrypTflow2 relies on:

• Introduced protocols for millionaires’ problem and a DReLU, which are suitable for the implementation of
non-linear layers of NNs such as ReLU, Maxpool and Argmax.

• Introduced protocols for division. Combined with introduced theorems on fixed-point arithmetic over
shares, they are demonstrated on the evaluation of linear layers, i.e., convolutions, average pool and
fully connected layers. The derived evaluations are faithful.

• Two different types of Secure Deep Learning Inference (SDLI) for the evaluation of linear layers, based
on HE and OT.

20An interface for ML frameworks such as TensorFlow [236] that has been developed by Intel: https://www.intel.com/content/www/
us/en/artificial-intelligence/ngraph.html.
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The cryptographic primitives used in CrypTFlow2 are 2-out-of-2 Additive Secret Sharing (A-SS), Oblivious
Transfer (OT), Multiplexer and Boolean-to-arithmetic (B2A) conversion, and HE. The FHE scheme employed
is the Brakerski-Fan-Vercauteren Homomorphic Encryption Scheme (BFV), also used in Gazelle [160] and
Delphi [155]. The system uses optimized algorithms of Gazelle for homomorphic matrix-vector products and
homomorphic convolutions. The implementation of SDLI using OT is based on EMP [231]. The linear layer
implementation using HE is based on SEAL [207] and Delphi. The performance achieved is quantified on
commodity hardware for relevant benchmarks. Specifically, the hardware machines used, each comprise a
four-core 3.7-GHz Intel Xeon processor featuring 16GBs of RAM. Two communication scenarios are compara-
tively evaluated, a LAN setting and a WAN setting. The LAN setting achieves 377 MBps bandwidth and 0.3 ms
echo latency. The WAN setting (transatlantic) has a 40 MBps bandwidth and an 80 ms echo latency. The result
achieved shows that in the WAN setting where communication cost is high, HE-based inference is always faster
while in a LAN setting, neither OT or HE is always better, the choice depends on the benchmark. CrypTFlow2
improves CrypTFlow [161]. It keeps the prior front-end that transforms TensorFlow inference code into an
intermediate format, and it modifies the back-end system which finally derives the secure code. CrypTFlow
comprises three components, namely, Athos, an end-to-end compiler mapping TensorFlow models to a vari-
ety of semi-honest SMPC protocols; Porthos, a semi-honest three-party protocol that significantly accelerates
TensorFlow-like applications; and Aramis, which uses hardware with integrity guarantees to convert any semi-
honest SMPC protocol into an SMPC protocol that provides malicious security. The derived implementations
match the inference accuracy of plaintext TensorFlow models. Both systems, i.e., CryptFlow and CryptFlow2
rely on EzPC [220] for the back-end operations.

Cheetah [237] is a highly optimized system architecture comprising of the software implementation of pro-
tocols for secure two-party computation neural network inference (S2PCNNI). It achieves faster and more
communication-efficient performances than certain implementations of state-of-the-art [148], firstly by the care-
ful redesign of encryption-based protocols that can evaluate the linear layers without any expensive rotation
operation and secondly by including several lean and communication-efficient primitives for the non-linear func-
tions (e.g., ReLU and truncation). More specifically, in the linear layers, based on the fact that polynomial
multiplication can be viewed as a batch of inner products if coefficients are arranged properly, Cheetah re-
places the matrix-vector multiplications involved in the functionalities F : {convolution, batch normalization, and
fully-connection} by polynomial arithmetic, i.e., polynomial multiplication, therefore eliminating the expensive
rotations included in the original matrix-vector multiplication computations. To achieve this, Cheetah introduces
three pairs of encoding functions (πi

F , π
w
F ), (one pair for each of the functionalities F), which map the values of

the input (e.g., tensor or vector) to the proper coefficients of the output polynomial(s), thus allowing the evalua-
tion of the linear layers of the deep NNs via polynomial arithmetic circuits instead of matrix-vector multiplications.
With the help of (πi

F , π
w
F ), it is shown in [237] how to evaluate the functionalities F privately. Also, πi

F and πw
F

are well-defined for any p > 1 such as p = 2l , allowing the protocols of Cheetah to accept secretly shared
input from the ring Z2l for free. In this context, special concern is given to avoiding extra information leakage
when only certain coefficients are expected to be received by a party, while receiving the polynomial arithmetic
outcome. Also, a partitioning scheme is proposed to split large input tensors and kernels into smaller blocks
and zero-pad the margin blocks so that each of the smaller blocks can fit into one polynomial. The proposed
protocols can then be applied on the corresponding pair of subtensor and subkernel. Cheetah outperforms
SIMD-based approaches [238], which require the plaintext to be from a larger prime field. In the non-linear
layers Cheetah uses (Vector Oblivious Linear Evaluation) VOLE-type OTe of protocols for the non-linear func-
tions [239], delivering lower communication complexity for the cases of the parameters used in neural network
inference. Cheetah also offers improvements to the truncation protocol required after each multiplication so
that fixed-point values will not overflow, thus achieving further performance gains in the non-linear layers. The
improvements are designed based on specific observations deriving from simulation experiments, as, for exam-
ple, that the two probability errors introduced by the local truncation protocols appear to be of different impact
on the overall NN computation, or, that sometimes the most significant bit (MSB) is already known before the
truncation. The protocol designs of Cheetah in the non-linear layers result in faster running time and bring down
more than 90% of the communication cost compared to the corresponding protocols of [148]. For the imple-
mentation of Cheetah the SEAL library, the HEXL accelerator and the EMP [231] toolkit have been used. Intensive
benchmarks over several large-scale deep neural networks are being reported in [237], all showing the latency
and communication performance improvements. For example, an end-to-end execution for ResNet50 under a
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WAN setting costs less than 2.5 minutes and 2.3 gigabytes of communication with Cheetah, which outperforms
CrypTFlow2 [148] by about 5.6× and 12.9×, respectively.

SecretFlow [240] is a framework that supports the development of privacy-preserving machine-learning and
data-intelligence applications through a Python interface. It includes, among other components, re-written
versions of most of the Cheetah protocols and offers a layered approach to privacy-preserving application de-
velopment. At the lower layer, SecretFlow provides abstractions of devices featuring secure processing and a
variety of HE schemes. Using higher levels of the framework, algorithms and applications can be build exploit-
ing the secure devices. The development of secure machine-learning algorithms is supported with a focus on
Federated Learning (FL)-related algorithms, providing suitable Python abstractions. Several means are sup-
ported for secure aggregation, including the use of SMPC-based SecretFlow security devices, and masking
with one-time pads [241]. Plaintext aggregation is also supported for evaluation purposes. The framework
utilizes TensorFlow [236] and PyTorch [242] further facilitating its integration to widely used ML system design
flows. More on FL-related libraries and tools can be found in Section 3.5.

4.5 Scaling up SMPC/FHE solutions

The vast majority of the literature on using PETs for DL assumes small numbers of parties and the use of
commodity hardware, usually a laptop-grade device for the client(s) and either a powerful laptop or small server-
grade device(s) for the model-owning server. In this section we will explore how performance gains can be
attained in this context from dedicated, powerful hardware, HE component-level acceleration and software
tools/techniques to more accurately reflect the health application use cases that are within the purview of the
SECURED project.

4.5.1 Hardware Acceleration

The computational load of SMPC/HE-based processing applications, such as SDLI and SDLT, and the com-
munication overhead required to attain secure data exchange between the parties, whether referring to a 2PC
client-server model or to a multi-party model, limits their widespread application to real-world problems. Al-
though software libraries, as mentioned in the previous paragraph, provide a very useful tool for privacy-
preserving processing, the gap between performances on plaintext vs. ciphertext on general-purpose com-
puting platforms is enormous, especially in the context of NN/DL computing. Hardware accelerators provide a
powerful tool to bridge this gap. Computationally demanding parts (modules) of the HE algorithms are mapped
to GPUs, ASICs and FPGAs, after being optimized for this purpose; optimizations aim to achieve efficient per-
formance metrics, such as low latency, high through-put, etc, while keeping track with the security parameters.

4.5.1.1 GPUs for HE

Graphical Processing Units (GPUs) offer an attractive choice for hardware platforms to cope with processing
secured by HE techniques. The superior amount of computational capabilities incorporated by GPUs can
accelerate the intensive arithmetic operations of modular multiplication, large polynomial multiplication, and
matrix-vector multiplication, which appear in such applications, while exploiting their inherent parallelism.

The first implementation of an accelerator for an HE scheme on a GPU appears in 2012 [243]. It concerns
efficient large-number modular multiplication in the size of million bits, and employs Strassen’s FFT-based
algorithm combined with Barrett’s modular reduction algorithm [233]. Experimental results for the small setting
of the Gentry-Halevi FHE scheme [244] with a dimension of 2048 on NVIDIA C2050 GPU, show speedup factors
of 7.68×, 7.4× and 6.59× for encryption, decryption and noise reduction (recrypt) respectively, when compared
with the available, at that time, CPU implementation of GH [244].

Since then, a number of implementations of GPU-accelerated HE schemes have been reported in the liter-
ature [245, 246, 247, 248, 249, 250, 251, 252, 253]. Advances are made in terms of execution time via the
parallel execution of certain HE schemes (CKKS, BFV, CMNT, LWE) on GPUs, with the improvements of
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the various implementations most of the times achieved by optimizing the NTTs in the HE scheme. Modular-
reduction techniques or reductions of specific moduli and/or RNS/CRT arithmetic offer improvements in certain
cases. Optimization may also regard the scheduling of primitives and memory access. For example, reducing
host-to-device and device-to host transfers, applying register-based constant-coefficient (i.e., twiddle factor)
storage, multi-stream computing, and asynchronous computing are some of the techniques which have been
applied. An efficient GPU-based implementation of the Torus FHE scheme [254] appears in [255], along with
a comparison to CPU-based implementation. Besides NN-layer core operations, bootstrapping has also been
treated [249, 256]. Recently, a GPU-based acceleration of a privacy-preserving inference scheme, which clas-
sifies encrypted genome data for tumor types has been reported [253]. The performances reported on GPU-
accelerated HE, appear promising for the further development of implementations related to secure medical
environment ML applications, such as privacy-preserving inference for the classification/interpretation of data
sets or images and scans of low/medium resolution.

4.5.1.2 Intel HEXL acceleration

Several of the existing FHE libraries take advantage of Intel’s Homomorphic Encryption Acceleration Library
(Intel HEXL [257]) that manages to offer an optimal realization of core FHE arithmetic operations at ISA level
when used. Intel HEXL is a C++ library which provides optimized implementations of polynomial arithmetic for
Intel processors by taking advantage of Advanced Vector Extensions 512 (AVX 512) instruction set operation.
The library is focused on optimizing polynomial multiplication and NTT operations for large sizes like the ones
used in FHE by practically providing efficient Intel AVX 512 implementations for element-wise vector-vector
and element-wise vector-scalar polynomial multiplication and the forward and inverse NTT. Intel HEXL is de-
signed to intercept HE libraries at the polynomial layer assuming that the library uses polynomials in Residue
Number System (RNS) form. Since most of the HE operations at runtime are including many operations at
the polynomial layer, the expected polynomial level speedup will result in substantial speedups at higher-levels
of HE operations. Intel HEXL is integrated into the Microsoft SEAL library, the PALISADE library and its extension
OpenFHE library as well as any similar libraries built on-top of SEAL that follow RNS approaches.

4.5.1.3 Techniques and Algorithms for Optimizing Homomorphic Encryption Custom/Dedicated
Hardware Accelerators

In the literature, several custom-FHE hardware accelerators have been reported, based on arbitrary parameter
sets such as plaintext parameters, ciphertext parameters, parameters for noise distributions, which were not
tested to be secured. An effort has been made to define parameter sets for each scheme in the community-led
HE Security Standard [183], where parameter sets and schemes are believed to be secure against state-of-the-
art attack literature. This section focuses on techniques expected to be useful for the hardware implementations
of the libraries in Table 8, based on the parameter sets of [183], targeting Field Programmable Gate Arrays
(FPGAs) and/or Application-Specific Integrated Circuits (ASICs). Prior custom implementations that rely on
arbitrary parameters, which may not be secure, are not addressed; furthermore, custom FHE schemes that are
not widely used, are also omitted, keeping the state of the art of this part beyond 2019.

Accelerating Multiplier. The plaintext polynomial ring is defined as Zt[x]/(x
n+1), i.e., the set of polynomials

with degree less than n and coefficients in Zt, where plaintext modulus t and the ring dimension n are both
integers. The ciphertext space is defined as C = Zql ×Zq′l

, where Zql = Zql [x]/(x
n +1) with integer ql defining

the chiphertext modulus at level l. The FHE operations that are applied on these polynomial rings are addition,
multiplication and modulo reduction.

As the ciphertext modulus ql becomes wider (128-bit is commonly used) to leverage the security robustness
of the schemes, the complexity especially of multiplication gets larger demanding techniques to decrease it’s
complexity from O(n2). Application of RNS is common, where modulus ql can be split into smaller moduli qli
and operations from Zql are mapped to multiple operations on Zqli

, decreasing the complexity of hardware-
implementations on multiplication and automorphishm.
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Based on Schönhage-Strassen Algorithm. Common multiplication schemes like KA or schoolbook multi-
plication method, become nearly infeasible for very-large integer multiplication (million of bits). The first most
outstanding implementations in terms of designing a multiplier accelerator , which was based on Schönhage-
Strassen Algorithm and was operating on multi-million bit numbers, is [258]. At that current time it was the first
chip-implementation that outperformed GPU state of the art, based on 90-nm (72–102× faster than GPU state
of the art) and was the start of meaningful FHE custom hardware acceleration. This was a general implemen-
tation though, not focused on a specific FHE scheme.

Based on Number Theoretic Transform. One of the basic modules in multiplication over integers is Number
Theoretic Transform (NTT), where operations are transformed to a "frequency domain," thus decreasing the
multiplication complexity from O(n2) to O(n · log(n)). In most cases Negative Wrapped Convolution (NWC) is
used, in order to minimize the complexity of the algorithm, which facilitates the evaluation of a full polynomial
multiplication that implicitly includes the reduction modulo Xn + 1, without increasing the length of the inputs,
otherwise the input size would be double the input-length.

Most implementations of current schemes are based on RNS, as discussed previously, designing efficient NTT
multipliers which are splitting a large multiplier into smaller ones [259], optimizing furthermore resources and
execution time, making Schönhage-Strassen Algorithm useless in terms of area-utilization.

Based on Karatsuba Algorithm. Karatsuba Algorithm (KA) [260] is a divide-and-conquer algorithm, which
reduces the multiplication of two k-digit numbers to three multiplications of k/2-digit numbers, a process which
can be recursively applied to at most klog2 3 ≈ k1.58 single-digit multiplications. KA has several advantages
compared to FFT/NTT, despite its highest asymptotic complexity. First, it is a simple algorithm, with basic
pre- and post-computations and, therefore, can be easily implemented. Second, KA can perform polynomial
multiplications with non-power of two degrees, allowing it to fit more precisely to the required parameters.

KA also has some limitations. First, KA requires a software/hardware co-design approach to meet competitive
computation times, which is not the case for FFT/NTT. Second, KA is a good alternative to FFT/NTT only to a
certain degree of n, as the advantages disappear after. Migliore et al. [261] present an extensive investigation
of offered benefits, for different n values, comparing KA to FFT for the BFV scheme (optimization of execution
time at 11.9 ms instead of 15.46 ms and 50% reduction of the logic utilization and registers of the FPGA until a
certain value of n).

Modulo Reduction. As discussed previously, Modulo Reduction is also on of the basic operations. Is used to
keep the integer numbers, after calculations, inside Zq. There are several ways to perform Modulo Reduction,
the most commonly used ones are Montgomery Reduction with KA [260], which is the optimal way in terms of
hardware implementation. Another classic reduction technique is Montgomery reduction optimized for particular
modulus ql values [262].

Accelerators/Co-processors. There are several implementations regarding accelerators/co-processor re-
garding FHE schemes.Table 9 summarizes the best in terms of speedup relative to software, frequency and
area utilization, allowing a straight forward comparison and a starting point for the reader. These solutions are
implemented on FPGAs, in contrary to Table 10, which contains solutions on ASICs. Need to mention here that
all solutions except CoFHEE [263] has not real ASIC hardware and aiming to do so in their future work. Also
need to note that comparison of speedup was made by running SEAL [207] benchmark Set-1 and Set-2 by a
single-thread, or translate the results to end up with comparable metrics.
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Work Platform × Speedup w.r.t.
software

Freq (MHz) Area Utilization (%)

ReMCA [264] Virtex-7 NA 250 6.5L+20.8B
SRTJ [265] ZCU102 13 200 50L+90B

HEAWS [266] AWS-F1 20 250 75L+83B
HEAX [267] Stratix 10 164 300 64L+80B
Medha [268] U250 137 200 55L+72B

Table 9 – Comparison of real hardware implementations, data from [268] (In the Area column, ‘L’ and ‘B’ stand for % of logic and on-chip RAM elements
used).

Work Technology (nm) × Speedup w.r.t.
software

Freq (MHz) Area Utilization (mm2)

F1 [269] 14/12 17K∗ 1 to 2 151.4
BTS [270] 7 2.2K∗ up to 1.2 373.6

BASALISC [271] 12 4K∗ 1 to 2 150
CraterLake [272] 14/12 8.7K∗ 1.2 472.3

ARK [273] 7 36K∗ NA 418.3
CoFHEE [263] 55 2.5 0.25 15

∗ Throughput is estimated by simulating a model of the accelerator.

Table 10 – Comparison of simulated ASIC implementations, data from [268]

ASIC proposed solutions In this section we will analyze two of the most promising ASIC-implementations of
Table 10. Analyzing their architectures and the techniques used that outperform the ones of Table 9, in terms
of speedup.

Trebuchet. TREBUCHET project [274] accelerates commonly used FHE schemes (BGV, BFV, CKKS, FHEW,
etc.) providing 128-bit security at least, while integrating with the open-source PALISADE and OpenFHE libraries
(offering 10× acceleration relative to previous state of the art implementations). TREBUCHET supports com-
mon lattice-based FHE schemes and provides a means to explore trade-offs offering a wide range of chip sizes
in order to achieve execution time performance an order of magnitude faster than the solutions in Table 9 The
system architecture comprises three layers:

1. The Application Layer, which comprises users’ applications written in C++, employing OpenFHE.
2. The Software Layer, which maps applications into the TREBUCHET hardware accelerator and is com-

posed of three sub-layers, (1) the OpenFHE [212] library, which provides secure FHE schemes, (2) the
so-called SPIRAL NTTX system, which maps high-level calls of OpenFHEAPI into kernels, i.e., software mi-
crocode functions, used to program the TREBUCHET hardware accelerator, and (3) a microcode compiler
which generates the firmware instructions that control the hardware units which process Large Arithmetic
Word Size (LAWS) data.

3. The Hardware Layer, which consists of the DPRIVE21 Accelerator ASIC (DA) and an FHE Processing
Board (FPB) which features the DA. The DA is composed of multiple modular components.

The DA is organized as a modular parallel and vectorized architecture. The main building blocks are the so-
called Ring Processing Units (RPUs). RPUs are on-chip tiles that contain multiple Arithmetic Logic Units (ALUs)
and perform modulo arithmetic. Data, such as ciphertexts and keys, are stored in shared vector-data SRAM.
Furthermore, RPU perform memory management opting for data to be placed near computational elements.
Data movement is minimized and data-level parallelism is exploited by using multiple instances of the tiles,
across the device. The architecture is scalable in terms of the bit width and allows for customization of several
parameters such as the number of multipliers and the memory size per tile, and the number of tiles.

21DPRIVE is a U.S. Government research project investigating hardware acceleration for FHE https://www.darpa.mil/program/
data-protection-in-virtual-environments.
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Basalisc BASALISC [271] is an architecture family of hardware accelerators designed to perform FHE com-
putations in the cloud. BASALISC implements the Brakerski-Gentry-Vaikuntanathan Homomorphic Encryption
Scheme (BGV) supporting up to 128-bit security and includes bootstrapping in the computations. As the ma-
jority of HE hardware implementations, BASALISC exploits the massive parallelism available in NTT/RNS. For
the bootstrapping procedure, it relies on Montgomery-friendly primes to achieve savings of up to 46% in logic
area and 40% in power consumption, compared to generic multipliers capable of supporting all moduli [275].

The main parts of the architecture data-path are a computational core, and a four-layer memory system which
is used for storing ciphertexts and keys. In the computational core, three different Processing Elements (PEs)
are distinguished: the asynchronous-logic Multiply-Accumulate, the Permutation PE, and the NTT PE. The
asynchronous logic provides important area and latency savings. The memory components are structured
as follows: i) Distant Memory, i.e., off-chip DRAM where data scheduled for processing and results ready for
retrieval by the host are kept. Two DDR4 interfaces work in parallel, connecting with two DRAMs, so that certain
operations such as loading new data to be processed and storing results to be retrieved by the host can be
done in parallel, without causing stalls. ii) Middle Memory, i.e., a conflict-free ciphertext buffer (CTB), which,
when co-operating with the available layout permutation unit and the generator for the constants required in
the transform (twiddle factors), reaches the delivery of 32 Tb/s radix-256 NTT computations. iii) Local MAC
Register File, and iv) Local MAC Accumulation Register.

The BASALISC system is connected to a CPU host, and they communicate either via Direct Memory Access
(DMA) or via Peripheral Component Interconnection (PCI), with the assistance of a simple interrupt-driven
protocol.

BASALISC provides three independent levels of abstraction in the instruction set. The highest level comprises
Macro-instructions, which use the largest data types, such as plaintexts and ciphertexts in their entirety, and
realize the operations needed to implement the BGV scheme, i.e., ciphertext addition, multiplication, operations
needed for ciphertext refreshing, [276] and bootstrapping. Mid-Level Instructions include memory manage-
ment instructions and instructions that facilitate the use of the combined RNS/CRT data representation; i.e.,
a residue polynomial comprising up to 216 32-bit polynomial coefficients. Operations supported at this level
include element-wise multiplication of a residue polynomial by a constant, computation of NTT, base extension
etc. At the lowest level, the Micro-instructions, refer to the basic functioning of the PEs. Data at this level are
formed by as many a number of coefficient words that can be dealt with by a PE at the same time, or fetched in
one cycle. An example of an operation on this level may be a multiplication of two operands and the addition of
the result to accumulate. Instructions at this level are fed to the processor via the PCI bus. Memory hierarchy
is managed in BASALISC by means of explicit Load-Move-Store semantics. A register-like addressing mode is
used for all memory-hierachy levels.

The BASALISC 1.0 is the first implementation of the BASALISC architecture. It is a single-chip FHE co-
processor designed in a 12-nm Global Foundries technology. It uses additional off-chip memory. Performance
simulations reveal a 4000× speedup to bootstrap a ciphertext, compared to HElib on a Intel Xeon E5-2630
CPU at 2.6 GHz running a single thread.

4.5.2 Algorithmic Acceleration

Sliced Implementations. To achieve high-performance cryptographic implementations in various platforms,
developers have largely relied on bitslicing [277] and more recently fixslicing [278] techniques that emulate
a SIMD architecture in assembly. These techniques have successfully accelerated standard AES cryptog-
raphy [279] and various symmetric or public key cryptosystems, often coupled with secret-sharing counter-
measures [280, 281, 282]. Expanding to FHE, implementors have naturally utilized slicing to accelerate the
underlying cryptographic primitives of schemes like AES, increasing the overall performance. More recently,
implementors opted for sliced representations directly on the FHE algorithm. Cheon et al. [283] have extended
existing schemes like DGHV to a batch processing mode that utilizes byte-level and state-level slicing to pack
and process many plaintexts in parallel using the Chinese Remainder Theorem (CRT). Similar approaches uti-
lized horizontal and vertical packing techniques [284] of coefficients to improve performance. Finally designers
have considered slicing in the context of ML algorithms implemented using FHE [285].
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Beyond AES-128 and SHA-256. The standardization of AES in 2001 has drawn large attention from the
cryptography implementor community and yielded numerous incremental improvements with respect to la-
tency, throughput, area and power consumption, in both software and hardware [286, 287]. Despite these
advances, the widespread demand for cryptography on small scale such as IoT applications, the quick growth
of SMPC, FHE and Zero Knowledge (ZK) technologies (often coupled with cloud technologies) and the need for
fault and side-channel resilience has rendered visible the shortcomings of the secure yet computationally inten-
sive Rijndael algorithm (standardized as AES). In a similar fashion, the sub-optimal SHA-2 hash function has
often caused performance bottlenecks in modern applications. In many SMPC schemes and in particular those
based on garbled circuits, the computation bottleneck is performing symmetric encryption operations either lo-
cally or as a joint protocol execution. Although the literature on joint execution of AES is rich [288, 289, 290], and
these papers emphasize the difficulty of computing a function which has a relatively high multiplicative depth in
the garbled circuit setting.

As a result, in recent years, research strands emerged aiming to replace existing cryptographic primitives with
more efficient algorithms. This new frontier of algorithmic design aims at primitives that are tailor-made to the
application context. For instance, the need for small-scale cryptography led to various lightweight symmetric
AEAD22 and hash schemes [291, 292] that can provide security in a resource-constrained environment. Like-
wise, the need for security against side-channel and fault attacks called for easy-to-mask primitives. This strand
resulted in the design of non-linear layers with low multiplicative complexity to reduce the computational over-
head associated with the quadratic (w.r.t. the masking order) cost of masking multiplications [293, 294]. Several
lightweight and easy-to-mask primitives utilized 4×4-bit sboxes with multiplicative complexity of 4 [295].

SPN cipher designs for SMPC, HE, ZK. Motivated by such advances, designers have identified the need for
primitives with low multiplicative complexity and low multiplicative depth in the application context of SMPC, FHE
and ZK. Beginning with LowMC [296] which is based on a Substitution-Permutation Network (SPN) design strat-
egy; designs improved performance by minimizing the number of GF (2) multiplications needed per encrypted
bit using an sbox with multiplicative complexity (MC) of 3 and multiplicative depth (ANDdepth) of 1. In addition,
LowMC utilized partial non-linear layers (a Partial Substitution-Permutation Network (P-SPN) structure) that
further improve performance by relaxing the requirements of the wide trail design strategy [297]. Notably the
design demonstrates flexibility since it can be instantiated for various block and key sizes, and became the core
function of the Picnic post-quantum digital signature scheme [298]. LowMC however did not provide inherent
support for multiplications in GF (2m) and GF (p) and required costly conversions between field types, leading
to performance issues in several protocols and triggering the development of the MiMC encryption and hashing
algorithm [299]. MiMC is also a flexible primitive that can also be utilized within a sponge construct [300] and
was extended for usage in a Feistel network [301] in the GMiMC variant [302]. It has successfully accelerated
zero-knowledge SNARK23 applications (including Zerocash [303] that underpins the Zcash cryptocurrency) and
zero-knowledge Boolean circuits. Notably, the low multiplicative complexity of both LowMC and MiMC/GMiMC
makes them also well-suited for masking countermeasures against side-channel threats, an attack vector which
merits consideration in the context of hardware ledgers for digital currencies.

These novel P-SPN designs faced several security issues such as the differential and linear attacks against
Zorro [304, 305], coupled with algebraic attacks on LowMC and MiMC/GMiMC [306, 307]. This exacerbated the
need for generic security frameworks for SMPC/FHE-friendly ciphers that use the P-SPN structure. To this end,
the HADES framework [308] combined full and partial non-linear layers to provide wide-trail security arguments
for P-SPN, while still resisting algebraic attacks. This design effort culminated in the HADESMiMC cipher and
later in the POSEIDON and POSEIDON2 family of hash functions [309, 310]. In a similar fashion, the Marvellous
framework [311] proposed a two-step design and developed the AES-like Jarvis cipher and Friday, a Merkle-
Dåmgard hash [312] that accelerate ZK STARK protocols [313] proposed for applications like the Ethereum
cryptocurrency. Algebraic cryptanalysis has, in turn, found weaknesses in their structure [314]. Additional
derivatives of the Marvellous framework include the Vision and Rescue ciphers [315] that are optimized for

22Authenticated Encryption with Associated Data, a form of symmetric encryption that can be achieved using a blockcipher such as AES
in a carefully designed mode of operation such as Galois Counter Mode (GCM).

23Succinct Non-interactive ARgument of Knowledge, a type of proof system that allows a prover to demonstrate knowledge of something
without revealing it using a short proof.
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usage in SMPC and ZK applications and the later Chagri design [316] that uses MDS-based linear layer and
is optimized for HE. Still, cryptanalysis in this domain is developing quickly, forcing a change in parameters of
Chaghri [317].

Stream ciphers for HE. The development of HE-friendly ciphers has been largely motivated by the popular
compressed encryption application by Naehrig et al. [318]. Combining symmetric ciphers with FHE (also known
as hybrid FHE) avoids a lengthy and computationally intensive FHE operation on the client side by encrypting
symmetrically the data and encrypting homomorphically the symmetric key. Subsequently, the encrypted data
gets homomorphically decrypted on the server side by running the decryption circuit. At this point the server can
proceed with further privacy-preserving computations on homomorphically encrypted data. This application has
highlighted the need for an efficient encryption function that minimizes the overhead of homomorphic evaluation
of symmetric decryption (also known as the decompression overhead).

Such an application context led to first considering the eSTREAM24 finalist Trivium [319] as the underlying
primitive for compressed encryption and triggered the development of Kreyvium [320], a 128-bit key variant
of Trivium. Notably, both stream ciphers managed to outperform LowMC in this particular application con-
text while not demonstrating the same security concerns w.r.t. interpolation attacks [306]. Following, the FLIP
cipher design [321] aimed to combine the positive aspects of block and stream ciphers and counter their neg-
ative features. Thus FLIP combined the constant per block noise of LowMC-like designs with the low noise
level achieved by stream ciphers like Kreyvium. Both FLIP and the later FiLIP [322] designs utilize novel filter
permutators, aiming for a symmetric encryption scheme whose homomorphic evaluation of decryption is as
cheap as possible w.r.t. the error growth. The designs are suitable for FHE schemes where the error growth
depends on the multiplicative depth of the circuit but also FHE schemes with asymmetric error growth.

Notably the earlier design trend of ciphers with low multiplicative complexity persisted in the field of HE-friendly
stream ciphers. The design of the stream cipher Rasta [323] expanded on LowMC/MiMC aiming to concurrently
minimize the multiplicative depth and number of multiplications per bit, utilizing ASASA permutations [324] that
randomize the affine layer of the cipher. Several variants followed, such as the Dasta [325] that uses the Keccak
χ operation [326] for non-linearity and fixes the affine layer using BCH-based diffusion to improve performance,
Masta [327] that extends Rasta to support modular arithmetic and Pasta [328] that aims to accelerate hybrid
homomorphic encryption. Another variant, Fasta [329] integrates the bitslice parallelism to the cipher structure
in an improved fashion to further increase performance for specific HE schemes. Similar approaches by HERA
and Rubato [330, 331] aim for applications aimed for improvements in the context of approximate HE and
the CKKS scheme [203].

4.5.2.1 Tailoring SMPC and HE to the DL context

As the use of SMPC and HE in the context of DL has become more prominent, the research literature has
began to take a more fine-grained approach to the more challenging operations that occur in DL systems, and
particularly the difficulties in executing these operations when requiring malicious security. Early works on this
topic considered speeding up matrix multiplication in the semi-honest setting by replacing Beaver triples with
more complex variants of correlated randomness [153], and this work was extended into the malicious security
setting soon after [332]. More recent papers have shown how to perform convolutions [223]. A separate line
of work has considered packing HE ciphertexts to perform (among other tasks) convolutions in parallel using
(encryptions of) specially constructed matrices [333].

Most efficient SMPC protocols in the dishonest majority setting make use of pre-processing, where input-
independent correlated randomness is created: for secret sharing this is random multiplication triples, while
in garbled circuit protocols this is the one-time generation of a garbled circuit. Schemes are in general rela-
tively fast when the number of parties is small, however they scale quite badly for large numbers of parties.
A recent line of work has attempted to bridge this gap, by proposing optimizations and techniques that target
multi-party computation where the number of computing parties is large, with the aim of speeding up both the
offline pre-processing phase and the input-dependent online phase [334, 335, 336, 337, 338].

24A stream cipher competition ran by ECRYPT between 2004 and 2008 https://www.ecrypt.eu.org/stream/.
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4.5.3 Scaling up Privacy-Preserving Federated Learning

The largest part of this section has focused on training and inference in DL systems, however FL techniques
introduce security issues that are not present in ML systems trained on a single centralized dataset and these
issues have been described in Section 3.3. We briefly summarize here some existing approaches to tackling
the security and privacy concerns in FL25, before providing insight into how these techniques can be scaled
up to larger numbers of parties or more complex FL models. Where possible, we will indicate where the other
acceleration techniques described in this section are applicable to FL.

As described in Section 3.3.3, secure aggregation has been demonstrated to be somewhat practical in the
single-server setting [342, 343], i.e., where one global model is being trained by an aggregator and the training
parties wish to conceal their own model updates (gradients) from other training parties and the aggregator.
This line of work has been enhanced by strengthening the corruption models in which the privacy-preserving
federated learning system operates [344, 345], and increasing the computational and communication effi-
ciency [346, 347].

A recent line of work has focused on how to securely aggregate in the setting where there is a distributed
aggregator, ensuring security even if a subset of the participating aggregating servers collude [348, 347, 349],
in order to mitigate privacy leakage to a single aggregator [350, 351]. These works generally employ SMPC
techniques both for the secure aggregation between the clients, and for combining the aggregated values into a
joint model between the servers, and therefore can benefit from the acceleration discussed in this section that
is focused on speeding up SMPC. Incorporating Homomorphic Encryption (HE) techniques into more of these
workflows also appears to be a promising area for future research.

An area that has so far not received much attention is categorizing the types of training in FL in terms of ease of
integration of PETs. It is evidently important to speed up techniques for FL while introducing additional privacy
features, however the landscape at the moment is not mature enough to indicate which model types and use
cases experience the lowest overheads in the privacy-enhancing context.

4.6 Outlook for Privacy-Preserving Technologies in Machine Learning

In the previous sections we have introduced the core concepts that underpin Secure Multi-Party Computation
(SMPC) and Homomorphic Encryption (HE), described how they are used in existing literature and tools and
then indicated where acceleration techniques can benefit components in the workflows of privacy-preserving
training and inference for machine learning. The existing literature is evolving rapidly, reflecting the rapid de-
velopments in all aspects of machine learning, and this means that developments are occurring in multiple
dimensions simultaneously.

We will now aim at summarizing the recent trends and indicate the inevitable trade-offs that occur, with the aim
of providing a high-level overview of the current state of research in the area.

4.6.1 Hybrid Schemes

In modern approaches, it is rare for a single privacy-enhancing technology to be used, in contrast to the earlier
efforts such as CryptoNets [162] (HE only) or ABY3 [158] (SMPC only). Each component of the workflow can
often be considered separately, with more and more published works focusing on enabling faster conversion
between data representations for seamless switching between technologies.

It would be unsurprising for this trend to continue: as more protocols for individual components appear, there
is more of a requirement to integrate these new protocols into other systems. Increased modularity is not just
desirable from an efficiency or performance perspective: many modern protocols are proven secure in the

25We emphasize again that we do not focus on differential privacy in this section, which has been used to boost client privacy in federated
learning, for details on this topic see e.g. [339, 340, 341] and references therein.
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universal composability framework [352] 26 that ensures combinations of (possibly complex) protocols will not
be less secure than their component parts.

4.6.2 Expansion of Use Cases

So far, much of the research literature has focused on performance on inference in relatively simple neural
networks or other small-scale ML classification tasks, such that the conclusions drawn may not be applicable
to more general ML/DL use cases. This is unsurprising: academic papers will wish to demonstrate how much
their technique improves on the state-of-the-art by showing a performance increase on a somewhat equal task
(and performance numbers that run in relatively short time periods, rather than hours or days).

As we have seen in Section 4.5.1, there has been an emergence of (large-scale, well-funded) projects that
aim to accelerate components of PETs in multiple dimensions, bringing more complex DL tasks into play. Ade-
quately comparing the existing approaches then runs into the problem of reproducibility, particularly in the case
of custom hardware. However, with these performance increases we can expect to see privacy-preserving
techniques to be added to more and more challenging ML environments to assess the current limits of the
technologies.

4.6.3 Assessing Performance for the Online phase

In general, the bottleneck of SMPC and HE approaches is the performance in the input-dependent online
phase. SMPC protocols based on secret sharing require low communication between the parties for each layer
of multiplication gates in the circuit, and their round complexity is linear in the depth of the circuit. Therefore
the bandwidth requirement is low, giving very efficient performance in a Local Area Network (LAN) setting but
poor performance when high latency comes into play in Wide Area Network (WAN) scenarios. In garbled circuit
protocols, the online phase consists of the parties providing their garbled inputs and run in constant rounds,
but with each round being slower: this means that they perform better in the WAN setting. For approaches
based on HE, the online communication is simply a single ciphertext, so the time taken by the online phase is
entirely dependent on the evaluation of the desired function on that ciphertext; the choice of activation function
will have a big impact on online performance, since the use of the squaring function will run much faster than
(a polynomial approximation of) ReLU or Sigmoid.

4.6.4 Assessing Performance of Underlying Cryptographic Primitives

The various options and challenges presented by applications involving PETs translates to a plethora of de-
sign goals, features and metrics for the underlying cryptographic primitives that support such applications. In
Table 11, we provide a list of common distinguishing features that can help to pinpoint the design choices of
a cipher and assess its implications. We note that the listed features do apply to all cipher designs since the
landscape of SMPC/HE/ZK-friendly primitives is fairly heterogeneous and fragmented in order to fulfill various
criteria. More importantly, we stress that many listed features are of a qualitative nature and cannot be directly
translated to quantitative metrics, unless analyzed in a strictly specified context.

26According to Canetti et al. universally composable definition of security is ” that they guarantee security even when a secure protocol
is composed of an arbitrary set of protocols, or more generally when the protocol is used as a component of an arbitrary system” [352].
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Design Goals Description
Accelerated Method SMPC, HE, ZK or their combination
Accelerated Application Specific application or scheme such as BGV, CKKS (approximate

HE), compressed encryption, SNARKs, cryptocurrencies, etc.

Design Features Description
Cipher Type SPN-based or stream-based
Non-linear Layer Lightweight sbox, AES-like sbox, partial substitution, Keccak χ,

NLFSR, filter permutator
Linear Layer Random/fixed, MDS matrix, BCH code, rotation-based, ASASA
Design Strategy HADES P-SPN, Marvellous 2-step
Arithmetic Support for GF (2), GF (p) or GF (2m) schemes
Mode of Operation Supported modes like sponge, Feistel, etc.
Bitslicing Support for batch operations

Metrics Description
MC Multiplicative complexity (number of multiplications)
ANDdepth Multiplicative depth of circuit
ANDs per bit Number of multiplications needed per encrypted bit

Table 11 – Design features of PETs-friendly cryptographic symmetric primitives.

4.6.5 Related State-of-the-Art Gaps

Finally, based on the section analysis, in Table 12 some preliminary State-of-the-Art Gaps have been identified.

Challenge
Gap ID

Description Flows Related SECURED
Component(s)

SoTA-GAP-
01

Non Linear Operations are hard to
be realized in FHE Schemes

Processing SMPC Engine

SoTA-GAP-
02

Oblivious Transfer or Secret Shar-
ing Schemes have high Communi-
cation delay

Processing SMPC Engine

SoTA-GAP-
03

Hardware accelerators for FHE
schemes require extremely high
number of resources and chip cov-
ered area

Processing SMPC Engine

SoTA-GAP-
08

Efficient sliced implementations
of SMPC/FHE-friendly ciphers in
software platforms

Processing SMPC Engine

Table 12 – SMPC main State-Of-the-Art Gaps
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5 Synthetic Health Data Generation

Data is central to all areas of research, including health. However, access to data in health care is tightly
controlled, as the procedures to access them is usually slow as ethical approvals have to be obtained. Moreover,
this kind of data is not accessible for the general public given the ethical concerns that this might raise, because
of the lack of contact with the data providers, concerns over data security, re-identification and the lack of control
of the patients over their data [353]. These facts limit the innovation, development and efficient implementation
of new research, products, services or systems that can be potentially beneficial for the general public.

Synthetic data can be a solution for this problem. Synthetic data is defined as “microdata records created by
statistically modeling original data and then using those models to generate new data values that reproduce
the original data’s statistical properties.” This definition highlights the strategic use of synthetic data because it
improves data utility while preserving the privacy and confidentiality of information [354].

Notice that this function can be well covered with the open datasets available, which are usually well curated
and strongly deidentified. Section 5.1 shows a collection of some of these datasets. Also, there are new
possibilities to use the original data, while keeping them secured in the premises of the data provider, e.g., a
hospital. These techniques are a good solution but are not perfect as they require security measures that might
hinder the accuracy of the data, as mentioned in previous sections.

In this sense, synthetic data is one of the many innovative ways to allow organizations to share datasets with
broader users, minimizing the need to access real personal data and complementing both anonymization and
secure data usage approaches like Federated Learning. Moreover, this approach is not limited to the possibility
of sharing data, but it is also relevant to do Data Augmentation, i.e. the ability to enlarge the dataset by gener-
ating new data. In this way, medical institutions can share their anonymized data or provide a framework to use
them without sharing and also include more synthetic data to complement their data. This is specially important
for Deep Learning based techniques as the more complex the model is, the higher the number of parameters
that needs to be trained, and, therefore, the more data is needed. For these reasons, we explore the literature
and remark the utility of synthetic data in the health care domain.

In the following sections we describe a review of the State of the Art in synthetic data generation regarding four
kinds of data: Medical imaging, time-series, genomics and electronic Health Records. We particularly focus on
the necessities of the SECURED project. The review is driven by the following research questions, addressed
in the respective sections:

1. Which kind of synthetic data is relevant for the SECURED project? Is there any open/accessible dataset
for each kind of data modality? (Section 5.1)

2. Which techniques have been tested for each particular data modality? (Section 5.2)

3. Is there any existing software or tool that provides this functionality? (Section 5.3)

4. How are the methods evaluated? Which technologies or methodologies are promising for each data type
and which are the gaps in the State of the Art? (Section 5.4)

5.1 Data types and Data profiles

In this section we consider the first two research questions. First, which kind of data generation is needed for
SECURED and then which kind of open data we can find related to it.

In Table 13, we can observe the types of data that could be available in the use cases/pilots of the SECURED
project. This reference is used to drive this section for the selection of the State of the Art manuscripts. In
particular, we select the four main data types: Images, time-series, genomic data and electronic health records.
Notice that there are some data modalities already present in the table, but as this list might not be definitive,
we explore modalities that are outside of this list. In terms of research of synthetic data, there is a wide amount
of research performed for image data which will be discussed later in this work. Time-series are also reviewed
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Type of data Data modality
Image X Ray (Mammographies...)

Digital tissue images (colon, liver, lung, mamal, brain...)
MRI (spine, nervous system, brain...)

Time-series Electrocardiogram (ECG)
Cardiotocogram (CTG)

Oxigen saturation
Other respiratory variables

Genomics DNA SNPs
Tabular Electronic Health Records
Table 13 – Summary of the types of data and modalities that could be available for the project.

showing that this research area is not that well explored. Finally, we also include a brief information about
genetic/genomic data, as our prior knowledge on this kind of data is scarce and performing a deep analysis
of the synthetic data generation in this particular field requires wide expertise in the use cases. All of this is
present in the following sections. On the other hand, tabular data is not covered as there are many recent
reviews regarding this type of data that cover our requirements, like Hernandez et al. [355] and Yan et al. [356].

Apart from collecting the data that could be available through the use cases of the project, we have also included
the results of an initial compilation of the most commonly used open datasets for the different types of data
mentioned in Table 13. This will be of great utility for the initial phases of the project. We will be able to start
the analysis of the available methods in the literature while the data of the pilots is being gathered. In addition,
making use of the open data will help to better validate the results of our research outcomes and make them
reproducible by the research community. We introduce the collected open data in the following subsections.

5.1.1 Images

One of the main sources of data in the medical domain are images. The availability of diverse and well-annotated
datasets plays a crucial role in ensuring the accuracy and generalizability of generated medical images. Re-
cent advancements in this field have led to the creation of various datasets that cater to different modalities,
anatomical regions, and medical applications. Even if medical images are hard to obtain due to their privacy
issues [357], we summarize some notable datasets.

Datasets are generally designed for a specific medical application. As such, these datasets can be categorized
based on the modality of the images.

For MRI the body part are diverse: brain, cochlea, pelvic region, knee, prostate:

• BraTS (Multimodal Brain Tumor Segmentation) [358]: focuses specifically on brain tumor segmentation
and provides multi-modal MRI scans, including T1-weighted27, T1-weighted with contrast, T2-weighted,
and Fluid attenuated inversion recovery (FLAIR) sequences. This dataset enables the development and
evaluation of synthetic image generation techniques for brain tumor analysis.

• ADNI (Alzheimer’s Disease Neuroimaging Initiative) [359]: The ADNI dataset includes neuroimaging
data, including MRI scans, from individuals with Alzheimer’s disease, mild cognitive impairment, and
healthy controls. It facilitates the study of synthetic image generation for early detection and monitoring
of Alzheimer’s disease.

• CrossMoDA 2021 [360]: contains MRI images of type T1, T2 designed to perform cochlea segmentation.

27There are different types of contrast images in Magnetic Resonance Imaging (MRI), T1-weighted MRI which enhances the signal of
the fatty tissue and suppresses the signal of the water and T2-weighted MRI which enhances the signal of the water.

65



D4.1 - State of the Art and initial technical requirements

• Gold Atlas male pelvis dataset [361]: consists of MRI images (T1 and T2) and CT images of 19 male
patients over the pelvic region.

• fastMRI [362]: deidentified imaging dataset comprises raw k-space ( the 2D or 3D Fourier transform of
the image measured) in several sub-dataset groups: knee, brain, prostate.

X-ray datasets (mainly from chest):

• ChestX-ray14 [363]: The ChestX-ray14 dataset consists of over 100.000 frontal-view chest X-ray im-
ages with associated radiologist-labelled annotations for 14 common thoracic pathologies. It serves as a
benchmark dataset for synthetic image generation in chest X-ray analysis and aids in the development of
automated diagnostic systems.

• NODE21 [364]: frontal chest radiographs with annotated bounding boxes around nodules. The images
come from other datasets and have been labelled: JSRT [365], PadChest [366], Chestx-ray14 [363],
Open-I [367].

• CheXpert [368]: large dataset of chest X-rays, with more than 224 chest radiographs, which features
uncertainty labels and radiologist labelled reference standard evaluation sets.

Mammography datasets (more abundant than other modalities):

• INbreast [369]: Mammographic database that includes several types of lesions (masses, calcifications,
asymmetries and distortions) for 115 cases.

• OPTIMAM[370]: image database that contains mammography images and associated clinical and patho-
logical information. It contains over 2.5 million images from 1.7 million women. It includes normal breasts,
benign findings, screen-detected cancers and interval cancers.

• BCDR (Breast Cancer digital Repository) [371]: contains mammography and ultrasound images, clini-
cal history, lesion segmentation and selected pre-computed image-based descriptors. They have been
labelled by specialized radiologists.

• CBIS-DDSM (Curated Breast Imaging Subset of Digital Database for Screening Mammography) [372]: a
database of 2.620 scanned film mammography studies. It contains normal, benign, and malignant cases
with verified pathology information. Updated ROI segmentation and bounding boxes, and pathologic
diagnosis for training data are also included.

• CSAW (Cohort of Screen-Aged Women) [373]: images from mammography screening with more than 1
million examinations. Also has manually annotated labels and metadata for the patients.

RGB imaging:

• REFUGE (Retinal Fundus Glaucoma Challenge) [374]: contains retinal fundus images for the diagnosis
and analysis of glaucoma. It provides a diverse set of images with various degrees of glaucoma severity.

• DRIVE (Digital Retinal Images for Vessel Extraction) [375]: retinal images collected from diabetic retinopa-
thy patients.

• STARE (STructured Analysis of the Retina) [376]: contains retinal images together with expert annotations
that consist of diagnoses for each image, blood vessel segmentation, artery/vein labelings, optic nerve
detection.

• ISIC [377]: The dataset contains dermoscopic images of unique benign and malignant skin lesions from
over 2000 patients. Diagnoses have been confirmed using expert agreement or histopathology.

• PH2 [378]: is a dermoscopic image dataset that allows both segmentation and classification algorithms.
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• HyperKvasir [379]: Contains real gastro and colonoscopy examinations with partly labels by experienced
gastrointestinal endoscopists. The dataset contains 110.079 images and 374 videos where it captures
anatomical landmarks and pathological and normal findings, giving in total around 1 million images and
video frames.

Furthermore, some datasets contain multiple data modalities:

• MSD (Medical Segmentation Decathlon) [380]: comprises ten different medical imaging challenges cov-
ering various tasks such as brain tumor segmentation, liver segmentation, and cardiac segmentation. It
provides a large-scale benchmark for evaluating the performance of synthetic image generation models
across different anatomical structures and modalities.

• UK Biobank [381]: a large-scale biomedical database and research resource, containing in-depth genetic
and health information from half a million UK participants that contains data or the study of diseases such
as cancer, heart disease, stroke, obesity, genomic anomalies, mental health.

These datasets, among others, provide valuable resources for training and evaluating deep learning models in
synthetic medical image generation tasks. They contribute to the advancement of research in medical imaging
and assist in the development of reliable and accurate diagnostic tools for various medical conditions.

5.1.2 Time series

Apart from images, the medical domain also contains a large volume of time-series data. Good examples are
electrocardiograms and electroencephalographs, very valuable for the study, analysis and diagnosis of multiple
health problems.

A time series is a set of samples of data obtained in different moments of time. Figure 4 shows a group of twelve
series with different forms and patterns. Usually, time series are divided into four distinct components: level,
trend, seasonality and noise. The first three components are typically referred to as systematic components
and, on the other hand, the noise is characterized as the non-systematic component. In this way, we can view
a time series as a composition of systematic components with added noise. The level is the average value of
the samples from the time series and the trend is the change between one sample and the consecutive one
along all the samples of the series. Regarding the seasonality, it describes the cyclical behaviours that can be
appreciated consecutively repeated in the overall trace [382].

As previously introduced, we have included a compilation of the most commonly used datasets in the literature,
focusing only on the medical data that is open for its usage in research. For creating a more practical summary,
we have incorporated Table 14 that lists the different types of available time series. In this way, it is easier to
find the datasets that are more helpful for specific use cases. Moreover, Table 15 shows the full list of datasets
along the linkage to their corresponding types of series that they incorporate. It is worth mentioning that we
have only included the main types of traces, although additional subtypes and tabular data can be found in
some of these datasets.

Both tables will be expanded and improved over the course of the project. It is expected to include a considerable
number of new datasets and to severely enhance the current taxonomy and ordering. The next list includes a
brief definition of the different initials corresponding to distinct biological signals that appear in the tables:

• Electrocardiogram (ECG): electrical signals in the heart, useful for detecting heart problems and monitor
the heart’s health.

• Fetal Electrocardiogram (FECG): electrical signals in the heart of the fetus, useful for fetal monitoring
during pregnancy.

• Electrooculography (EOG): corneo-retinal standing potential that exists between the front and the back of
the human eye, useful for analysing the eye’s health and for understanding its behaviour.
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Figure 4 – A group of different time series with distinct level, trend and seasonality.

• Electroencephalography (EEG): electrical activity in the brain, useful for studying and analysing the cog-
nitive processes.

• Magnetoencephalography (MEG): magnetic activity in the brain, mainly useful for research about the
functions of the brain.

• Electrocorticography (ECoG): similarly to EEG, electrical activity in the brain, although ECoG is recorded
through sensors located inside the skull, in the cerebral cortex. It is used to confirm the location and extent
of epileptic tissue for brain surgeries.

• Electromyography (EMG): muscle response to a nerve’s stimulation of the muscle, useful for detecting
neuromuscular abnormalities.

Apart from this, we include the following list that briefly introduces all listed datasets for a general presentation
of their purpose and origin.

• eICU Collaborative Research: compilation of vital sign measurements from admissions to intensive care
units (ICU) across the United States. It comprises over 200 thousand patient unit encounters for over 139
thousand unique patients [383]. It can be found through this link at the Physionet repository [384, 385].

• MIMIC-III (Medical Information Mart for Intensive Care): compilation of measurements from patients ad-
mitted to critical care units at a large tertiary care hospital, containing data associated with 53.423 distinct
hospital admissions for adult patients and 7.870 neonates [386]. Past versions of the dataset are also
used in the literature. It can be found through this link at the Physionet repository [387, 385].

• Alcoholism EEG: compilation of EEG signals of 122 subjects to study EEG correlations to genetic predis-
position to alcoholism. The samples come from the State University of New York Health Center, United
States. It can be found through this link at the UCI Machine Learning Repository [388].

• Diabetes: compilation of measurements performed to subjects suffering from diabetes and healthy sub-
jects. The samples come from the National Institute of Diabetes and Digestive and Kidney Diseases,
United States. The dataset can be found through this link at the UCI Machine Learning Repository, which
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type of data subtype identifier

Breath CO2 concentration 1
exhalation measurements 2

Blood pressure 3
glucose % 4
insuline % 5

Heart ECG 6
FECG 7

Head EEG 8
EOG 9
MEG 10
ECoG 11

Other vital signs 12
EMG 13

Table 14 – Compilation of time series data types that are used in the reviewed works concerning open medical time series

dataset patients traces type source28

eICU Collaborative Research 139.000 [12] US
MIMIC-III 46.467 [12, 6] US
Alcoholism EEG 122 [8] US
Diabetes 70 [3, 4, 5] US
MIT-BIH Arrhythmia 47 [6] US
BCI Competition IV 30 [8, 9, 7, 11] GER/AUS/US
Sleep-EDF 22 [8, 9, 13] NTH
Siena Scalp EEG 14 [8, 12] ITA
Breath Metabolomics 4 [1, 2] SWI
UCR TS Classification Archive N/A [6, 12, 9, 13, 7] N/A

Table 15 – Compilation of the available open datasets used in the reviewed works that include medical time series ordered by their number of patients.
Unfortunately, the number of patients is quite arbitrary and not a good option for the ordering approach. The real value of the dataset heavily relies, between
others, on the number of time series per patient, the length of each time series, the sampling rate, the number of null values and the general quality of the
data.

was used in 1994 at the AAAI Spring Symposium on Artificial Intelligence in Medicine. It can be found as
well, with other characteristics, at the Kaggle repository through this link [388].

• MIT-BIH Arrhythmia: compilation of ECG recordings obtained from 47 subjects. The records are manually
annotated by two or more cardiologists for research into arrhythmia analysis and related subjects. The
samples come from Boston’s Beth Israel Hospital, United States [389]. It can be found through this link
at the Physionet repository [385].

• BCI Competition IV: competition containing a set of four datasets compiling single-trials of spontaneous
brain activity with the goal of validating signal processing and classification methods for Brain-Computer
Interfaces (BCI) [390, 391, 392, 393]. Datasets from past competitions are also used in the literature. It
can be found through this link.

• Sleep-EDF: compilation of 197 whole-night PolySomnoGraphic sleep recordings, containing EEG, EOG,
chin EMG, and event markers. It contains sleep patterns labels that were manually scored by well-trained
technicians. The samples come from the Leiden University Hospital, Netherlands [394]. It can be found
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through this link at the Physionet repository [385].

• Siena Scalp EEG: compilation of EEG recordings from 14 patients for the diagnosis of epilepsy and the
classification of seizures. The samples come from the Unit of Neurology and Neurophysiology of the
University of Siena, Italy. It includes labels performed by an expert clinician after a careful review of
the clinical and electrophysiological data of each patient [395]. It can be found through this link at the
Physionet repository [396, 385].

• Breath Metabolomics: collected data from breath metabolomic experiments in a pilot study with four sub-
jects. The samples come from the University Children’s Hospital Basel, Switzerland. It can be found
through this link at the UCI Machine Learning Repository [388].

• UCR Time Series Classification Archive: a huge collection of datasets for time series classification that
includes ECG, EOG, FECG and EMG signals. The dataset is widely used in the general domain of
time series classification. The specific datasets that contain medical data are the following: CinCECG-
Torso, ECG200, ECG5000, ECGFiveDays, EOG, MedicalImages, NonInvasiveFetalECGThorax, Semg-
Hand and TwoLeadECG. The origin of the samples of each dataset requires further research. The dataset
can be found through this link [397].

5.1.3 Genomics

Since the success of the Human Genome Project [398], the technology has become more efficient and cheaper,
so that DNA sequencing has become more accessible. With the availability of this data, its importance has been
recognized and research has been pushed towards its understanding and use. Nowadays, this kind of data is
used in fields like healthcare.

Naveed et al. [399] mention the high impact of genomic data but also that there are many risks when sharing
it as in further research we discover new information that can be found in the genome. This study shows
that re-identification is a well explored topic and even attacks to Machine Learning models knowing part of the
background information of the person. For example, Lin et. al [400] show that with just 75 independent SNP
(Single Nucleotide Polymorphism) it is possible to identify an individual. This is also an issue in more restricted
environments where only specific queries are replied to but the data is not shared, like it is shown in the work of
Shringarpure and Bustamante [401]. Hence, publishing the sequences individually is a risk for the donor. The
re-identification approaches and the attacks on the Machine Learning models raises concerns about sharing
genetic data, particularly because we still do not know all that we can find in the genomes, as mentioned before.

Given these risks, there has been efforts towards de-identifying this data, like the approach of Ziegenhein and
Sandberg [402]. Still, Bernier et al. [403] hold that the de-identified data is not anonymous, however in the
legislation of some countries like Canada, the threshold to consider data anonymous is not “zero risk”.

Genomic synthetic data offers a trade-off between privacy of the samples and utility. By generating fake patients
statistical analysis of the genomes can be performed. For example, hiding a sensitive part of the genome might
not be enough as high-order correlation models can be exploited [404]. Therefore, this approach is a promising
one.

Some examples of open and controlled data are available in the following list:

• 1000 Genome Project: A project that ran from 2008 and 2015 to create a large repository of human
variation and genotype data. The data is accesible by their FTP and contains 2.504 individuals from 26
populations. Available in this link.

• International Human Epigenome Consortium data portal [405]: A consortium stablished in 2012 in
Canada to support large-scale human epigenome mapping. Currently they have over 7.000 different
donors. Part of the data is accessible through the website, but other data requires approval to access.

• Harvard Personal Genome Project: A project started in 2005 which aims to provide genome sequencing
data to boost medical research. Currently they have over 5.000 donors. The data is available on their
website.
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• DREAM challenge datasets: The ICGC-TCGA DREAM Genomic Mutation Calling Challenge was a
challenge launched to improve the standard methods for identifying cancer-associated mutations. This
challenge had two different datasets, the real one (4TB) that requires permission to download and a
synthetic one (2TB). More information can be found in the following link.

• UK Biobank [381]: As presented in the images section, the UK biobank is a large repository that also
includes genomic data, however the access is strictly regulated.

• GEO: The Genomics Expression Omnibus is a public functional genomics data repository. It currently
hosts 4.348 datasets with over 200.000 series. All the data is available and the instructions to download
them are in their website. Notice that this data can be downloaded directly using software like R using the
bioconductor packages.

Notice that other repositories like HapMap have been shutdown because of security issues.

5.2 Data Generation Techniques

5.2.1 Images

Image generation across medical imaging modalities is an active area of research. This synthetic generated
data has the potential to enable faster research on model development and, in the medical educational field,
alleviate cost associated with obtaining new data samples.

Note that it is often challenging to obtain high quality, balanced datasets with labels in the medical domain.
Medical images are mostly imbalanced and time-consuming to obtain their labels, and contain private data. To
overcome these issues, several studies exploit generative models to increase the size of the training set by
artificially synthesizing new samples. This process is often referred to as data augmentation, and it is a very
popular technique in computer vision.

Given the rapid progress in the fields of machine learning and computer vision over the last two decades,
image synthesis is now viable and has a growing number of exciting applications. Deep learning, as a broad
subdiscipline within machine learning and artificial intelligence, has dominated the field for the past several
years [406].

Deep learning methods use neural networks to extract useful features of images. In the context of image
generation, these methods usually share a common framework that uses a data-driven approach. First, the
training is performed as regularly done, and then the model is ready to be used for prediction. In this case,
what is obtained from prediction is a new generated image.

In this study, we review deep learning methods for data augmentation, and classify them by the taxonomy of the
used architectures. We can manly distinguish between three differentiated architectures. Furthermore, since
the models are application specific, we will also group them by imaging modality.

Further comprehensive information and in-depth analysis of different methodologies can be explored in peer-
reviewed surveys [407, 408, 409, 406, 410, 411].

The taxonomies of the reviewed studies can be grouped into three categories: Variational Autoencoders (VAEs)
[412], Generative Adversarial Networks (GANs) [413] and Diffusion models (DMs) [414]. These three groups
are not completely different from each other, but represent increases in architecture complexity. For example,
VAEs are a type of network that can act as a basic component in advanced architectures such as GANs or
Diffusion. Furthermore, an extension of the VAE network, called U-Net [415] has been used as a backbone
for the generative part both in GANs and Diffusion Models. Although Transformers [416], another deep learn-
ing architecture, have been used for medical imaging [417] we are not aware of any work that uses them for
unconditioned synthetic image generation.
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5.2.1.1 VAEs

VAEs extend the basic Autoencoder (AE) architecture by incorporating probabilistic modeling techniques. Sim-
ilarly to AEs, VAEs have an encoder, typically based on convolutional layers. Contrary to AEs, VAEs encode
the input data into a latent space distribution, typically a multivariate Gaussian distribution, rather than a fixed
point. This distribution is defined by mean and variance parameters, learned during the training process. VAEs
simultaneously optimize two losses: the per-pixel reconstruction loss, the same used in AE and the regulariza-
tion loss that ensures that the latent variable follow a normal distribution. The generative aspect of VAEs comes
into play during the decoding phase, where random samples from the latent space distribution are fed to the
decoder to generate new data points. By sampling from the latent space, VAEs allow for the creation of diverse
and novel data samples that capture the underlying characteristics of the training data. The latent space serves
as a continuous and structured representation of the input data, enabling interpolation and smooth transitions
between samples. VAEs are known for their ability to capture the underlying data distribution, handle missing or
incomplete data, and enable interpolation and exploration in the latent space. They outperform other generative
methods in terms of output diversity and easier training. However, they tend to produce blurry output images
due to the regularization loss, and this is one of the reasons why they have received less attention than other
generative models such as GANs.

However, works do not use VAEs in this basic form, but add variants that improve the quality of VAE-generated
data.

• U-Net [415]: a type of convolutional autoencoder that was designed to perform semantic segmentation
by adding skip connections.

• Inverse autoregressive flow [418]: rather than mapping a Gaussian distribution, this model introduces a
more flexible approach by using an autoregressive model to transform a simple distribution (e.g., Gaus-
sian) into a more complex distribution. This transformation is performed in reverse during the decoding
process and allows the VAE to capture more complex and structured latent space representations.

• InfoVAE [419]:incorporates an additional information bottleneck into the latent space. By introducing a
regularization term in the VAE’s objective function that maximizes the mutual information between the la-
tent variables and the input data. It leads to better interpretability and control over the generated samples.

• VQ-VAE2 [420] (Vector Quantized Variational Autoencoder 2): it introduces a discrete latent space. To
learn it, it adds a vector quantization objective, where each codebook represents a unique prototype. This
model captures discrete structures in the data and produces high quality reconstructions.

• CVAE [421] (conditional VAE): conditions the generation process on additional information, such as class
labels or attributes.

• VAE-GAN [422]: combines the power of GANs and VAEs, further details the next section.

An overview of study use cases where VAEs have been used in the medical field can be found in Table 16.
Variations to cater to specific applications have been made, and some of the most successful applications use
the VAE-GAN [423, 424] architecture.
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Citation Method Dataset
Body
part

Measures

MRI

[425] ICVAE Private brain segmentation

[426] CVAE
OpenfMRI, HCP,
NeuroSpin, IBC

brain classification

[427] GeometryVAE ADNI, AIBL brain classification
[424] IntrospectiveVAE Private brain classification
[428] RHVAE OASIS brain classification
[429] MM-VAE UK Biobank heart MSE, MMD

Ultra sound

[425] ICVAE Private Ultra sound spine classification
[423] VAE-GAN Private Ultra sound thyroid segmentation, SSIM

Others

[430] AL-VAE Private OCT segmentation, Wasserstein distance
[431] DM-VAE Private Otoscopy tympanometry measurements
Table 16 – VAE-based works for medical augmentation, divided by imaging modality and including architecture, dataset and measures used to asses
performance.

5.2.1.2 Generative Adversarial Networks (GANs)

In GANs, two neural networks are trained jointly in a competitive manner: the first network (generator) gen-
erates synthetic data, and the second network (discriminator) is trained to distinguish between real and the
synthetic data generated by the first network. This process is called adversarial training, where the generator
and discriminator play a min-max game, with the generator striving to produce increasingly realistic samples
and the discriminator attempting to improve its discriminative ability. Given that the generator is a generative
model, a VAE can be used to produce the generated samples, and the GAN setup can be seen as a VAE
with an extra loss term, which is the adversarial loss. Once trained, new data points can be synthesized by
feeding the generator with a noise sample. GANs excel in generating visually compelling and highly realistic
samples. Nevertheless, GANs also have their drawbacks, such as learning instability, difficulty in converging,
and suffering from mode collapse [432].

To address this challenges, several variations of GANs have been proposed:

• WGAN [433] (Wasserstein GAN): replaces the Jensen-Shannon divergence as in the original GAN formu-
lation by a Wasserstein distance. It leads to more stable training than original GANs with less evidence
of mode collapse, as well as meaningful curves that can be used for debugging and searching hyperpa-
rameters. In practice, the downside of the WGAN is its slow optimization.

• CGAN [434] (conditional GAN): adds a conditioning variable to the latent vector in the generator, allowing
for more control over the generated samples and partially mitigating mode collapse.

• pix2pix [435]: introduces a conditional generator to learn to translate images from one domain to an-
other by replacing the traditional noise-to-image generator with a U-Net, a type of VAE that adds skip
connections.

• DCGAN [436] (deep convolutional GAN): In this model, both the generator and discriminator follow a set
deep convolutional network architecture, exploiting the efficacy of spatial kernels and hierarchical feature
learning. Concepts such as Batch-Normalization and Leaky-ReLU have been included to improve training
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stability and increase the resolution of synthesized images, but issues such as mode collapse were not
entirely resolved.

• PGGAN [437] (progressive growing GAN): The key idea behind PGGAN is to gradually increase the
resolution of both the generator and discriminator as the training progresses. The training begins with a
low-resolution generator and discriminator and then progressively adds new layers to model finer details.
This progressive growth allows the model to capture high-resolution details and generate higher-quality
images.

• CycleGAN [438]: learns the mapping from a source domain to a target domain and vice versa, without
the need for explicit correspondences between individual samples. It introduces a cycle consistency loss,
which enforces that translating from one domain to another and back should result in the original input.

• ACGAN [439] (auxiliary classifier GAN): adds an auxiliary classifier in the discriminator that predicts ad-
ditional class labels associated with the samples. It enables both the generation of realistic samples and
the control over the generated samples’ class attributes.

• VAE-GAN [422]: uses VAE as the backbone for the GAN generator. It replaces the VAE reconstruction
error term with a reconstruction error expressed in the GAN discriminator.

Next, we study use cases where GANs have been used in the medical field. Table 17 shows a summary of
relevant studies. Several variations from the previously mentioned have used to generate synthetic images.
Most of the works focus on a secondary task to evaluate the generations.

5.2.1.3 Diffusion models (DMs)

Recently, Diffusion models (DMs) have demonstrated promising ability to generate realistic and diverse out-
puts [457, 458]. This type of model is based on the diffusion process: they learn the progressive mapping from
noise to the actual data distribution. The training consists of two processes: a forward diffusion process that
gradually adds noise to the input and a reverse denoising process that learns to generate data by denoising.
In the models proposed, a U-net backbone is used to learn the progressive reverse denoising. By the end of
training, the model is able to map a noise input to an initial data point, hence, similarly to GANs and VAEs new
images can be synthesized by sampling a random noise vector. One of the drawbacks of DMs is their high
computational cost and huge sampling time.

To combat the issues, researchers have proposed several variants of diffusion models that aim to improve the
sampling speed while maintaining high-quality and diverse samples:

• Progressive distillation: distils a trained diffusion model that contains many steps into a new diffusion
model that takes half as many sampling steps.

• FastDPM (Fast Diffusion Probabilistic Model): uses a modified optimization algorithm to reduce the sam-
pling time and introduces a concept of continuous diffusion process.

• DDIIM (Denoising Diffusion Implicit Model): implements a non Markovian diffusion process, to speed up
the sampling process.

• DM-GAN (denoising diffusion GAN): a combination of DM and GAN that has shown to provide high-quality
and diverse samples at a much faster sampling speed (by a factor of 2000).

Another drawback that has been recently found is that diffusion models tend to memorize training data. Carlini
et al. [459] show in their work that due to the large amount of parameters, Diffusion Models have a tendency
to not generalize enough so that similar data to the one provided by the training can be extracted, leading
to the discussion that the model may be just doing interpolation between the training images. This is still an
underexplored area of research.
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Citation Method Dataset
Body
part

Measures

MRI

[440] LAPGAN Private brain human observer, inception score
[441] semi-coupled GAN Private heart classification
[442] WGAN BraTS brain human observer
[443] DCGAN BLSA brain human observer
[444] DCGAN BraTS, HCP brain segmentation
[445] PGGAN private brain segmentation
[424] StyleGAN private brain classification

CT scans

[446] PGGAN private mammography Inception score, FID, SSIM
[447] DCGAN /ACGAN M30 liver lesion
[448] CycleGAN NIHPCT segmentation
[449] pix2pix BraTS, ADNI brain segmentation

X-Ray

[450] DCGAN Private chest classification
[451] DCGAN NIH PLCO chest classification
[452] DCGAN NIH PLCO chest classification

[453] WGAN+infoGAN CellDetect bone marrow classification, segmentation

Fundus imaging

[454] CGAN DRIVE retina segmentation

Dermoscopy

[455] LAPGAN ISIC skin JS divergence, MAE, MSE
[456] CatGAN+ WGAN ISIC, PH2 skin classification

Table 17 – GAN-based works for medical augmentation, divided by imaging modality and including architecture, dataset and measures used to check
performance.

Table 18 summarizes works that apply diffusion models to generate synthetic data. This works are very recent,
but show promising results, and they represent the increasing attention these type of models have gained in
the medical image field.

5.2.2 Time series

The domain of time series has received less attention by the research community in comparison with the enor-
mous push in contributions from the disciplines of computer vision and natural language processing. This is
clear when taking a look at the low amount of publications concerning time series, and specifically, regarding
the generation of medical traces. Nevertheless, the drastic revolution of deep learning has allowed to address
more complex problems with far more powerful models and techniques. In the last couple of years, plenty of
new contributions have appeared using these developments in the field of time series generation: many are
adaptations of models and methods from the domains of computer vision and natural language processing.

Time series data has some characteristics that require special attention when creating new techniques. The
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Citation Method Dataset
Body
part

Measures

MRI

[460] CLDM UK Biobank brain FID, SSIM
[461] IITM-Diffusion BraTS brain segmentation
[462] brainSPADE SABRE, BraTS brain segmentation

CT scans

[463] DDPM ADNI, LIDDC-IDRI chest segmentation

X-Ray

[464] LDM CXR8 thoracic classification

Histopathology

[465] MF-DPM TCGA brain classification

Dermoscopy

[466] DALL·E 2 Fitzpatrick skin classification
Table 18 – Diffusion-based works for medical augmentation, divided by imaging modality and including architecture, dataset and measures used to asses
performance.

time dimension is of great importance, and the shape and pattern usually take more significance than the
individual values of the time points. Some time series tend to stretch through large fractions of time, making
the capture of shapes and patterns a quite complicated task. Nowadays, the majority of methods work with
multivariate series, where each point in time comes along a set of features. Nevertheless, univariate traces are
still present in the industry in plenty of places.

The generation of time series is applied in the literature for the use cases of data augmentation, missing values
imputation, data denoising and anomaly detection. Data augmentation is the main field of research and contri-
butions. In this way, the vast majority of surveys are focused on this specific use case [467, 468, 469, 470]. It
is worth pointing out the works from Kenji, et al.[469] and Wen, et al. [470] that present a handy and effective
taxonomy that characterizes the existent contributions along a list of examples for each specific category. The
survey from Kenji, et al. is the only work, to our knowledge, that empirically compares an extensive set of
methods from the literature29. They are evaluated on the final use case of data augmentation in a time series
classification set up. Unfortunately, the work performs only a comparison of classical methods, it does not test
any deep learning model.

Regarding the generation of time series, without focusing on a specific use case, we have only found one survey
coming from the team of Brophy, et al. [471]. The work compiles, in a well written manner, the contributions
in regard to the generation of time series with GAN. In addition, it highlights some interesting contributions
that tackle differential privacy and privacy preservation. Section 5.4 includes an extended description of the
evaluation methodologies, including the topic of privacy, of substantial importance in the domain of health data.

On the other hand, concerning medical traces directly, one more time we have only found one survey from
Lashgari et al. [467]. It comprises the multiple contributions about data augmentation of EEG traces. Unluckily,
the survey is specific exclusively to this type of traces.

With all the prior, is interesting to highlight the gap in the literature in regard to surveys of time series generation.
Would be of great interest for the research community, an empirical survey comparing the available methods to
generate medical time series, taking special emphasis on deep learning models and using an extensive list of
different types of medical traces.

29indeed, it provides an open implementation for all them that can be found through this link
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5.2.2.1 Taxonomy

To summarize and categorize all methods of the literature, we have decided to merge the proposed taxonomies
from the works of Kenji, et al. [469] and Wen, et al. [470] previously cited. Emphasizing the good pieces of both
of them. We present a new division for the most general category, thinking that it improves the legibility and
the classification of the available techniques. We will highlight one or two contributions of every main division,
putting the focus only in the ones related to medical traces. For an extended list of related papers, please
consult the aforementioned surveys.

Table 19 exhibits the suggested taxonomy. The first division splits the methods into three different families: per
time series approaches, mixing approaches and global approaches. The second division splits the techniques
into multiple domains. We may introduce new nested divisions over the course of the project, specially for the
case of the global approaches which have received the most attention lately.

Family Domain Medical examples

Per Time Series Approaches Magnitude [472]
Time
Frequency

Mixing Approaches Magnitude [473]
Time
Frequency

Global Approaches Decomposition Models [474, 475, 476, 477, 478, 479, 480]
Statistical Models
Learning Models

Table 19 – Taxonomy of time series methods for data generation

Per time series approaches correspond to methods that actuate over individual time series, only using their
contained information. These techniques are usually referred to as classical methods, and conformed the
state of the art in many fields of the time series domain before the apparition and expansion of deep learning
methodologies. It is worth mentioning that some method names are quite general, thus it is possible to find in the
literature some other meanings that slightly vary from the ones here exposed. The per time series approaches
can be divided in the following domains, depending on which information they modify:

• Magnitude: these methods change the values of the time points without changing their ordering in the
time dimension. Some common examples are jittering, rotation and scaling. The jittering transformation
adds noise to each time point sampled from a chosen distribution, whereas, the rotation transformation
rotates the full length of the time series for a specific number of degrees. On the other hand, scaling
uniformly applies a linear function to all the time points of the time series.

• Time: these methods disrupt the order of the time points. Good examples are the techniques named
cropping, permutation and flipping. Cropping puts attention only in a specific section of the time series,
discarding the remainder. Instead, the permutation transformation slices the series into different segments
and modifies their order in the trace. Conversely, the flipping technique inverts the order of the time points,
making the first position become the last time point of the trace and vice versa.

• Frequency: these methods are less common, they actuate over the frequency spectrum rather than over
the time dimension. The Fourier transform is usually mentioned as a representative case of this kind of
techniques. Aside from the last, other frequency approaches obtain the spectrogram of the time series
and apply some of the already mentioned magnitude and time domain techniques in its new form.
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Figure 5 shows visual examples of some of the previous approaches. Notice that all these methods can be
mixed together to conform hybrid techniques. We have included one of these in the Figure, named as window
wrapping, which compresses or extends a determined segment of the time series.

Figure 5 – Examples of per time series approaches for generating new data.

Concerning medical traces, we can cite the work from Guennec, et al.[472]. They experimented with the benefits
of data augmentation techniques with ECG traces among other types of time series in a classification set
up. They proposed a variation of the cropping mechanism, where each slice of a time series was analysed
separately using a voting mechanism for taking the final decision for the overall time series. As well, they
experimented with the window wrapping transformation, improving the final performance of the classification
use case.

Mixing approaches relate to the methods that merge the patterns from a very small set of time series, usually
only two. The advantatge of these techniques, alongside the global approaches, is that they do not generate
new patterns from scratch, they use the information already available on the dataset to create new time series,
mainaining somewhat the same latent distribution, unlike the per time series approaches family.

These methods can be divided as well into the three previous domains, magnitude, time and frequency. De-
pending on the information they modify they can end on one of them, being the hybrid domain also a possibility.
The interpolation mechanism is the most popular. It performs an interpolation in the magnitude domain between
two different time series, obtaining a new time series that has its values at a specific distance to both parent
traces.

It is worth mentioning the publication from Kenji, et al. [473] that worked, between others, with ECG traces
from the UCR Time Series Classification Archive. They generated a new time series from two distinct time
series named as student and teacher. The new time series would maintain the features of the student time
series while having the same pace of the teacher trace. This was performed with the help of a variation of the
Dynamic Time Warping (DTW) measure which is widely used in the domain of time series. The last will be
introduced in the Section 5.4. Interestingly, they slightly modified the DTW measure to use shapes instead of
individual time points, obtaining more visually realistic results.
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Global approaches comprise all those methods that use the information from a full set of time series. Meth-
ods that can generate new traces with patterns present in an extensive list of distinct time series. These ap-
proaches can be subdivided in the next domains:

• Statistical Models: This domain of techniques is quite direct in its approach which consists in choosing a
statistical model that is suitable for representing the shapes and patterns of a dataset of time series. Once
the model has been decided, the last can be used to sample new traces modifying the internal values of
the model. These types of methods are very useful when the time series mirror a pattern or behaviour
that is similar to a known statistical model. A clear example is using a linear function when the time series
follow a linear pattern or using a sinusoidal model when the time series obey some kind of sine wave
behaviour.

• Decomposition Models: These methods could be considered as a subset of the statistical models. They
are based on the systematic components of the time series. As their first step, they find and obtain one
or multiple statistical models for representing the level, trend and seasonality of the dataset and a model
for depicting the noise distribution. From this point forward, they can generate infinite new time series
varying the values of the statistical models and sampling from the noise distribution.

• Learning Models: Given the revolution of deep learning, these are the methods that attract the majority of
the attention of the research community these days. They are methods that do not come with a predefined
representation of the time series to generate from, instead they try to learn this representation directly
from the data through a training phase. This kind of methods are useful for more complex time series
that contain data patterns that change over time or which cannot be represented with only linear models.
They also require less expert input and can be better automated, at least, theoretically.
Due to the nature of these methods, they are less coupled to the type of data. In this way, the available
learning approaches regarding time series in the literature are mainly adaptations from the disciplines of
computer vision and natural language processing as previously mentioned. Therefore, the subdivision
into VAEs [412], GANs [413] and Diffusion Models [414] from the Section 5.2.1 is equivalent in the case
of time series data. The main difference comes from the much lower amount of contributions and thus,
a less consensus in models, methodologies and datasets and the existence of big areas of research that
required much deeper exploration.

Concerning medical traces, we have performed a review of the works from 2017 onwards, finding mainly ap-
proaches based on Generative Adversarial Networks (GANs) [474, 475, 476, 477, 478, 479, 480]. Also the
publications from Zhou, et al. [476] and Hartmann, et al. [475] are worth mentioning. The team of Zhou pro-
posed the BeatGAN, a hybrid generative model, having the global structure of a GAN and employing a VAE
for the generator architecture. The final model was used for detecting anomalous beats in electrocardiogram
readings, checking the distance between the real trace and the generated sample which represented the stan-
dard behaviour. The chosen methodology allowed the system to give clear explanations of the model results.
On the other hand, the work from Hartmann, et al. presented and exposed a detailed description of how to
properly train GANs to avoid the well known problems that they endure. They tested their results generating
electroencephalographic signals with multiple evaluation metrics, obtaining realistic EEGs.
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5.2.3 Genomics

In this section we present a brief introduction to the current state of the art techniques. There are mainly two
types of techniques: based on statistical properties of the DNA and machine learning techniques.

Samani et al [481], an example of statistical exploitation side, they use a k-order Markov Chain in which the k

defines the number of previous Single Nucleotide Variant (SNV) to consider to predict the current SNV. This
SNV can have values from 0 to 2 considering the diploid genotype, which is the combination of alleles that this
particular SNV has. This model considers the statistical correlation between the SNVs, as they have a “correla-
tional” structure because of how the recombination process in the meiosis (cell split in sexual reproduction). On
the other hand, a simpler approach is the Bernoulli model which is a model that assigns the alleles randomly
using the population genome frequency for that particular variant position.

On the other hand, there have been approaches to this kind of data using Machine Learning techniques. Re-
stricted Boltzmann Machiness (RBMs) and Generative Adversarial Networks (GANs) are used for this task.The
RBM model is a neural network trained to create an embedding of the original data losing the minimum in-
formation possible. It is trained with the Contrastive Divergence approach which compares the input with the
recreated output through a Gibbs sampling. Yelmen et. al [482] compared RBMs, GANs, Bernoulli and Markov
chain models. Overall, RBM and GAN models performed better than Bernoulli and Markov chains regarding the
generated shape in a Principal Component Analysis space and statistical properties found for genetic studies
(e.g., Linkage Disequilibrium, minor allele frequencies...). RBMs tended to overfit the data more than GANs,
however the statistical properties were more respected in this model. Moreover, RBMs have two additional fea-
tures: Part of the input can be fixed in order to condition the synthetic generation output and the embeddings
created in the model can be used to visualize the data. On the other hand GANs showed more resilience to
attacks due to their underfitting compared to RBMs. However, the overfitting can be better controlled if a Near-
est Neighbour Adversarial Accuracy metric is included in the training process. This metric tries to maximize the
distances between the training set and the generated data, as can be found in the work of Yelmen et al. [482].
Finally, given that the GANs underfit the data, rare allele combinations are fixed to the most common one.

To address some of the concerns from this work, Arjovski et al. [433] define a new approach called Wasserstein
GAN (WGAN), that has been applied also in genomic synthetic data generation [483, 484, 485], based on the
Wasserstein’s distance to include the haplotypic structural information into the generator as the loss function
for the model, i.e., the metric to optimize when training the model. In this study they also include VAEs and
Conditional Restricted Boltzmann Machines (CRBM), which is a kind of RBM that includes a window of data
as extra information. In this case nearby SNV, like in the case of the Markov Chains, however with CRBMs
the actual SNV and the “history” or the nearby SNVs network weights are computed as different matrices that
affect each other. Both WGAN and CRBM outperform GAN and RBM, but both have their trade-offs in desirable
properties.

In the work of Oprisanu et al. [404] a comparison between a copying model (from HAPGEN), a coalescent
simulator, a recombination approach, RBM, GAN, WGAN and two new approaches introduced in this paper,
Rec-RBM and Rec-GAN, can be found. The recombination approach is based on a genetic map which includes
the recombination rate of SNVs, using them as prior knowledge for the generation. In Rec-RBM and Rec-GAN
what the authors do is to generate first some samples with the recombination approach and then train the RBM
and GAN models. This is done to mitigate the lack of data, i.e., to do a first step of data augmentation. The
recombination model maintains the most statistical properties in general, so providing the combination with
RBM and GAN generally improves the quality of the data generated afterwards, compared to only using the
initial training sample.

Overall, WGAN and CRBMs are the best performing models and they can be further enhanced with an initial
generation step with a better informed model with prior expert information embedded. With this approach we
can overcome lack of data up to some extent and provide models like RBMs more data to produce more accurate
synthetic data.

80



D4.1 - State of the Art and initial technical requirements

5.3 Existing Tools and Software Libraries

In this section we present a summary of the available tools and software found for synthetic data generation.
Notice that, as we focus on providing an open ecosystem for synthetic data generation we are not focusing on
already available solutions that are provided as a service, such as Gretel 30.

5.3.1 Images

Existing tools offer researchers and practitioners in the field of medical imaging the ability to leverage pretrained
generative models for synthesizing realistic and diverse medical images. In our exploratory work, we have found
some relevant tools that will allow easy deployment of generative models:

• Medigan [486]: Python-based tool specifically designed for medical image synthesis, providing a user-
friendly interface for generating synthetic datasets. It offers a selection of pretrained generative models,
allowing researchers and practitioners to generate diverse and realistic medical images for various clinical
tasks. This library integrates popular deep learning architectures, such as Generative Adversarial Network
(GAN) and Variational Autoencoder (VAE). These pre-trained models can be easily accessed through the
MedGAN library, eliminating the need for users to build the models from scratch. Furthermore, this Python
library also provides access to images present in public datasets.

• MONAI [487](Medical Open Network for AI): is a PyTorch-based framework dedicated to medical image
analysis. It provides a comprehensive set of tools and utilities, including pretrained generative models,
to facilitate synthetic medical image generation for different applications, such as image translation, data
augmentation, and domain adaptation. MONAI’s flexibility and extensibility make it a powerful tool for
synthetic medical image generation, along with other medical imaging tasks.

While open-source tools have greatly contributed to the advancement of medical imaging, tools specifically
dedicated to medical image synthesis, such as MediGAN and MONAI, are relatively scarce compared to other
fields like medical imaging segmentation [488, 489, 490].

5.3.2 Time series

Unfortunately, in the case of time series the number of available frameworks for generating new data is quite
scarce. There are no common tools that have spread across the research community. Nevertheless, we have
compiled the following list of tools and frameworks after a brief search on the Internet31. Leaves as future work
a further and deeper investigation of each of them to check whether they could be of real utility.

• A generator of synthetic time series by the Nike company. The framework is written in Python and it allows
to create fake traces with distinct seasonalities, levels and trends. It could be useful to test our methods
at first with dummy examples. It is available through this link at a GitHub repository.

• A package of the R language named as gratis that provides efficient algorithms for generating synthetic
time series with diverse and controllable characteristics. Similarly to the previous one, seems it only
contains simple and basic methods. In the same way, it could be useful for the initial phase of the project
or as a method to test the effects of new evaluation approaches. The package internal implementation is
available through this link at a GitHub repository.

• It is a public and extensive compilation of publications concerning the general domain of time series
including forecasting, classification and anomaly detection. It also includes a list of the available surveys.
It seems up-to-date and, thus, of great interest. It is available through this link at a GitHub repository.

30https://gretel.ai
31Notice that whenever we use the term of generation of synthetic time series we refer to the creation of new traces from scratch. When

there is no intention to resemble to a previous known set of time series.
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• A benchmarking framework for the generation of time series by the datacebo company (not synthetic).
Looks like it includes deep learning models aside of classical techniques and a suitable set of evaluation
approaches. It is available through this link at a GitHub repository.

• The implementation of a collection of methods for the generation of time series for the specific case of data
augmentation (not synthetic). It belongs to one of the surveys cited in the 5.2 Section [469]. Unluckily, it
exclusively contains basic methods. It is available through this link at a GitHub repository.

5.3.3 Genomics

In Genomics there are already open source synthetic data generators that implement different kinds of ap-
proaches. We provide a short list of three different types:

• HAPGEN2: Case control dataset at SNP simulator. It simulates haplotypes by making use of a recombi-
nation rate map at fine scale to ensure that the generated data has same Linkage Disequilibrium patterns
of the reference data provided. HAPGEN2 can be used as standalone software or as an R package and
it is publicly available here.

• Coalescent simulators: This kind of simulators generate the ancestry based on the data with the coa-
lescent theory, i.e. assumption of no recombination, no natural selection, no gene flow and no population
structure. This is done to treat each SNV equally likely. These simulators try to find common alleles in the
sample to derive the ancestor. There are many softwares available like Msms. There is also https://cran.r-
project.org/web/packages/coala/index.html which serves as interface to ms, msms and scrm to easily
specify a model for simulation and conduct the experiments.

• The already mentioned methods can be found published as research code in repositories like GitHub.
For example, all the methods from the work of Yelmen et. al [482] are available in their GitHub along with
the generated genomes. An alternative implementation of the Wasserstein GAN focused on Population
Genetic Alignments can be found in the following link.

5.4 Evaluation and research gaps

Evaluating how good or realistic is a generated data sample compared to the original data and measuring how
novel it is (or how non re-identifiable it is compared to the original data) is complex. Therefore, in this section
we list the metrics found for each data type for the review performed. Metrics are extremely relevant in every
modeling process, but are especially important in data generation as there is no clear gold standard for this
field. In the following sections we will see the metrics along with their definitions. Also as a conclusion, we list
the research gaps extracted from this review.

5.4.1 Metrics and evaluation

5.4.1.1 Images

Metrics to evaluate image generation techniques is a fundamental aspect of the research. In recent years,
several metrics have been developed to quantitatively measure the performance of image generation models.
The invention of said metrics is complex, but they play a vital role in guiding the development and comparison
of different generative models.

Metrics can be divided in different categories: overall image quality without reference and overall image quality
with respect to ground truth.

The first group of measures focus on evaluating the diversity, visual fidelity, and distribution properties of the
generated images without the need for labels:
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1. Human observer: Refers to the evaluation of human observers. Human evaluation provides subjective
judgements and insights that reflect human perception, preferences and aesthetic considerations. By
collecting judgements from multiple human observers, statistical analysis can be performed, and can
serve as benchmarks for image synthesis problems.

2. Inception score [491]: A measure of the quality and diversity of generated images, based on the activation
patterns of a pre-trained inception model.

3. Fréchet inception score [492]: A value which measures the distance between the distributions of features
extracted from real and generated images, based on the activation patterns of a pre-trained inception
model.

4. Wasserstein distance [493]: A measurement of the distance between two probability distributions, defined
as the minimum amount of work required to transform one distribution into the other.

5. KLD [494] (Kullback–Leibler divergence): A measure of the difference between two probability distribu-
tions, often used to compare the similarity of the distributions, with a smaller KL divergence indicating a
greater similarity.

6. Perceptual loss [495]: A metric of the distance between generated, and real high-level features extracted
by pre-trained neural networks.

Metrics in the second category evaluate the quality of generated images by comparing them to a ground truth
or reference image:

1. Mean Absolute Error (MAE): A measure of the average magnitude of the errors between the predicted
and actual values

2. Mean Squared error (MSE): A measure of the average squared difference between the predicted and
actual values.

3. Peak Signal-to-Noise Ratio (PSNR): A measure of the quality of an image or video, based on the ratio
between the maximum possible power of a signal and the power of the noise that distorts the signal.

4. Structural Similarity (SSIM) [496]: A measure of the similarity between two images based on their struc-
tural information, taking into account luminance, contrast, and structure.

5. Area Under the Curve (AUC): A measure of the performance of a binary classifier, calculated as the area
under the receiver operating characteristic curve.

6. Visual Information fidelity (VIF) [497]: A measure that quantifies the Shannon information that is shared
between the reference and the distorted image.

7. Universal Quality Index (UQI) [498]: quality of an image can be quantified using the correlation between
the original and restored images.

8. Learned Perceptual Image Patch Similarity (LPIPS) [499]: An evaluation metric that measures the dis-
tance between two images in a perceptual space based on the activation of a deep CNN.

9. Metrics in image quality analysis by auxiliary task: If the datasets contain labels, this metrics measure
how well the generated data performs in auxiliary tasks such as classification, detection or segmentation.
To do so, they use pre-trained models for each selected auxiliary task and compare the performance of
real data versus synthetic data.

As seen in Tables 16, 17 and 18, most works still use traditional metrics such as MAE, MSE or PSNR that are
shallow and do not correlate directly to the human expert evaluation. Finding the best metric to quantitatively
evaluate synthetic data is still an active field of research.
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5.4.1.2 Time series

Similarly to the image generation techniques, the importance of a proper evaluation when working with time
series is crucial. The majority of contributions in the literature assess the correctness of the generated data
directly on the final evaluation of the specific use case. For example, in the case of performing data augmenta-
tion in a classification set up, the classification metric would be used to check whether it increases when using
the original data along the generated samples. In this way, the evaluation methodology in these cases depends
entirely on the final use case, which it is outside the scope of this work.

Taxonomy. Nevertheless, there exist a limited set of contributions that judge the quality of the generated traces
alien to the final use case. We have summarized in a new taxonomy all the found metrics in Table 20. Notice that
the majority of metrics are present as well in the domain of image data, making visible the sharing of knowledge
between these two worlds.

Family Domain Examples

Direct comparison Raw Pearson Correlation Coefficient (PCC)
Percent Root Mean Square Difference (PRD)
Mean Squared error (MSE)
Root Mean Squared Error (RMSE)
Mean Absolute Error (MAE)
Dynamic Time Warping (DTW)

Abstract and Inception Score (IS)
Fréchet Inception Score (FI)

Distribution comparison Structural Similarity Index (SSI)
Maximum Mean Discrepancy (MMD)
Kullback–Leibler Divergence (KLD)
Wasserstein distance

Table 20 – Taxonomy of of evaluation metrics for time series generation

Our taxonomy mainly divides the metrics in two families: direct comparison and distribution comparison. The
metrics that perform a direct comparison are meant to compare between only two distinct time series. This
comparison can be made taking the raw values of the series (raw comparison) or comparing both traces in a
more abstract layer. This abstract layer is obtained extracting the internal latent features from a deep learning
model that has been already trained with similar data. It is said that this mechanism obtains results more similar
to the human perspective.

From all the exposed metrics of this family, only the Dynamic Time Warping (DTW) measure is native of time
series data. Indeed, it is widely used in the domain, appearing in many contributions in the literature, being
used for plenty of different purposes. The DTW metric overcomes the many issues that the Euclidean distance
encounters in the case of time series data (equivalent to average error functions like MSE, RMSE, ...). The
DTW finds the best fit in the temporal dimension between the two time series that are being compared without
altering the order of the time points. In that manner, traces that are very similar but are slightly shifted will result
in high similarity scores. On the contrary, applying the Euclidean distance would result in a quite low scores.
It is worth mentioning the work from Le Guen and Thome[500] that proposed a smooth relaxation of the DTW
metric for making it derivable. In that way, it could be used as the loss function by deep learning models in their
training phase, solving the problems of training with the MSE measure and its equivalents.

On the other hand, the evaluation metrics that perform distribution comparisons can work with full length
datasets. In addition, they can take into account the diversity and heterogeneity of the data. This can solve the
mode collapsed issue, very common in GANs architectures, where the generator learns to generate a unique
sample that is indistinguishable from the real samples. These kinds of problems are not correctly measure by
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direct comparison metrics, because they do not consider the global perspective.

In general, there exist a gap in the literature regarding the effects and behaviour of each evaluation metric in the
generation of new time series. Each contribution uses its own set of preferred metrics, a common consensus
is missing.

5.4.1.3 Genomics

In order to show the utility of the genomic synthetic generated data, what it is usually done is to compare both
the real data and the generated data using well known properties and metrics in the field of genetics, in order
to measure the utility of the data. As found in the previous sections, mainly the metrics can be split into direct
comparison and distribution comparison. Also, as in previous sections, there is no clear consensus on which
are the appropriate sets of metrics that are needed to be used to test if the synthetic data is of use. In this
section we list the metrics found:

• Wasserstein distance: Direct comparison. This metric that has already been introduced in the previous
sections is also used in genomics.

• Euclidean Genetic Distance: Direct comparison. Measure of divergence between populations, focusing
on the mutations. 0 means no difference in a particular place of the genome. This distance can be latter
plotted to find patterns.

• Fixation index: Distribution comparison. Summary statistic comparison. Compares the allele variability
of a sub-population with the global population, where being 0 translates to completely equal and being 1
translates to completely different.

• Linkage Disequilibrium: Distribution comparison. Metric that measures how different parts (locus/loci)
of the allele sequences are associated. It is a metric of independence of the alleles. In other words, it
measures the correlation of different parts of the DNA, which represents up to some extent the structure
of the DNA in terms of combinations.

• Major Allele Frequency: Distribution comparison. Summary statistic used in population genetics. Useful
to differentiate between common and rare variants in the population. It quantifies the most common allele
frequency of each SNP. The distribution of the frequencies can be compared between the real sample
and the generated sample with the Kolmogorov-Smirnov test.

• Site Frequency Spectrum: Distribution comparison. Summary statistic that can be seen as a density plot
of the minor allele frequencies. Again, both real and synthetic data can be compared with Kolmogorov-
Smirnov test to evaluate if the allele distribution probabilities are similar.

• Heterozygosity: Distribution comparison. Common in population statistics. Condition of having two differ-
ent alleles at the same location. In population statistics, lower percentage of heterozygosity means lower
diversity in the population. The distribution of heterozygosity can be again compared with Kolmogorov-
Smirnov test.
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5.4.2 Next steps in Synthetic Data Generation and Privacy

One of the principal concerns regarding the generation of health data is the exposure of sensitive information
from the original samples. Health data is categorised as personal data by the General Data Protection Reg-
ulation (GDPR) and is subject to meticulous controls for assuring the privacy of the patient individuals. It is
essential to prove that no possible reidentification or extraction of confidential information is possible before
making publicly available data that has been generated from private health datasets.

From our review of the literature, we have noticed that this is an active area of research that has become
more important in the past couple of years. In the examined contributions, we have identified three different
approaches to tackle this concern:

• Direct comparison between samples: This methodology consists in first using the generation approach
to sample multiples sets of synthetic time series. Subsequently, the distance computation between all
samples of the training and testing sets with each one of the generated traces is performed. A simple
threshold mechanism with precision and recall metrics is used to check the level of privacy. The goal is
to obtain false positives (i.e. a particular record is incorrectly identified as a member of the training set)
or true negatives (i.e. a particular record is correctly claim to not be in the training set) and to avoid true
positives (i.e. a particular record is correctly identified as a member of the training set). The threshold is
specific to the use case and to the convenience of the user or health institution[477].

• Distribution comparison between datasets: This approach consists in checking whether the distribution
of distances between the synthetic samples and the training set is equivalent to the distribution of dis-
tances between the synthetic samples and the testing set. If both distributions cannot be demonstrated
to be equal, symbolizes that the generation approach has ended memorizing instead of generalizing,
maintaining identifiable data from the original training samples[474].

• Algorithms changes: This methodology consists in modifying the generation approach itself to theoretically
disable the generation of reidentificalable samples. The most common approach is to use the so-called
differential privacy. Differential privacy, as introduced already in the document, assures that the generated
samples will change very slightly if a sample is removed from the training set. In that way, is very difficult
to check whether a sample was used or not in the training set based only in the generated samples. This
is usually performed adding noise in the internals of the algorithm[474, 501]. However, the added noise
affects the quality of the final samples, the goal is to find a balanced approach between anonymity and
quality of the synthetic data.

5.4.3 Related State-of-the-Art Gaps

Finally, based on the section analysis, in table 21 some preliminary State-of-the-Art Gaps have been identified.

Challenge
Gap ID

Description Flows Related SECURED
Component(s)

SoTA-
GAP-09

Transformers have not been tested as the backend of Dif-
fusion Models

Data Synthetic Data Gener-
ator
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SoTA-
GAP-10

The work on genomic data generation is scarce and there
is no modern framework to do it. Synthetic data gener-
ation for genomic data provides a more secure alterna-
tive to share de-identified data so that it can boost medi-
cal research. However, the alternative not come for free.
As shown by Oprisanu et al. [404], the utility of this data
in popular statistical analysis can be affected. Further-
more, the models themselves are not free from attacks
as can also happen in the other data types, e.g. Member-
ship Inference attacks. Finally, models that have higher
utility metrics tend to have a significant reduction in pri-
vacy, showing that there is currently a trade-off between
both [404]. On the other hand, in this data type the GAN
mode collapse happens more often due to the low prob-
ability of rare alleles. Therefore, there is a need to study
privacy preserving methods when training models for ge-
netic data

Data Synthetic Data Gener-
ator

SoTA-
GAP-11

There is no clear comparison of the methods across of the
image modalities in image generation. In imaging there
are particular gaps in the literature. For example, usually
CNNs have been used as backbone for diffusion mod-
els, but transformers could also be useful for this task.
Moreover, diffusion models are prone to memorize the
data [459], and this can also be the case of GANs. How-
ever notice that one of the possible solutions is differential
privacy techniques. Further study of the effect of privacy
preserving techniques needs to be done in this regards

Data Synthetic Data Gener-
ator

SoTA-
GAP-12

There is no standard solution and evaluation for data leak-
age in models that generate data

Data Synthetic Data Gener-
ator

SoTA-
GAP-17

In every data type we have not found a comprehensive
comparison of all the methods. For example, in imaging,
each of the generative methods are application specific
and have been designed for a particular imaging modal-
ity: X-ray, MRI, Digital tissue image, etc. Therefore, each
of the methods have different use cases and often differ-
ent evaluation metrics, making it difficult to make a direct
comparison across methods. Therefore, there is a need
of a common framework that can compare the methods
in a similar way

Data Synthetic Data Gener-
ator

SoTA-
GAP-18

Mixing Different methods is needed. Modern data gen-
eration techniques can benefit from classical techniques
to enlarge the training corpus. This is the case for ex-
ample of the recombination approach in Genetics, which
mixes sequences to create a “descendant” of the original
data. This method alone produces data that is easy to
re-identify, however using it as a first step to a more pri-
vacy robust technique can enhance further the utility of
the process as the modern technique will have more data
to train on.

Data Synthetic Data Gener-
ator
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SoTA-
GAP-19

In the case of time series, there are few works on this field
in general and, again, no comparison between methods
is available. There are, however, general domain com-
parisons for classic approaches [469] and for more mod-
ern approaches like GANs [471]. In this regard, there is
a need of an empirical comparison of the medical traces
with both classical and new Deep Learning methods.

Data Synthetic Data Gener-
ator

Table 21 – Synthetic Data Generation main State-Of-the-Art Gaps
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6 Health Data anonymisation

The various actors involved in the health sector, such as patients, caregivers, nurses, doctors, hospitals, re-
searchers, pharmacists, health authorities and regulators, are generating a huge amount of data every second.
Furthermore, the spread of telemedicine and the use of connected medical devices for monitoring patients in
hospitals, ambulances and at home, and the growing demand of wellbeing wearable devices, generate a mas-
sive amount of health data. Big data analytics techniques can analyse this huge amount of data, helping to
improve treatments, take faster medical decisions, prevent diseases, reduce cost of medical care, and, basically,
improve the quality of life of the general population [502]. To protect and preserve the privacy of these sensitive
data is a main challenge, when health data are shared with third parties for analytic purposes. The fulfilment
of the regulations such as the GDPR [503], Data Governance Act32 or the Data Act33, must be assured in this
kind of processes. Additionally, this sensitive information can be compromised by privacy threats such as user
re-identification, linkability and inference [504]. Privacy-preserving techniques (PPTs) such as data anonymi-
sation, generalization, perturbation or cryptography, are applied on health datasets for protecting health data,
avoiding, or mitigating user re-identification. Following the EC thought that “an effective anonymisation solution
prevents all parties from singling out an individual in a dataset, from linking two records within a dataset (or be-
tween two separate datasets) and from inferring any information in such dataset” [504], the SECURED project
is facing these challenges aiming to preserve health data privacy, prevent successful anonymisation attacks,
meet the requirements of current legislation and maintain the balance between data privacy and utility of these
data for research purposes. This section describes the state of the art of anonymisation and de-anonymisation
techniques and tools, performing an evaluation of the anonymisation techniques, which are more suitable for
providing advanced anonymisation tools with sufficiently strong privacy guarantees.

6.1 Advanced Anonymisation Techniques

The anonymisation process involves turning personal or sensitive information (e.g., health data) to anonymous
information, by removing personal identification information from a dataset through the application of anonymi-
sation techniques, which preserve the privacy of the data subjects. The European Union regulation (GDPR)
states that anonymous data is “information which does not relate to an identified or identifiable natural person
or to personal data rendered anonymous in such a manner that the data subject is not or no longer identifi-
able” [503]. In this way, the anonymous data are not considered personal data and the GDPR is not applicable
(Recital 26 [503]). There exist some misunderstandings related to this anonymisation process as the Spanish
Data Protection Agency states [505], because it is not always possible to reduce the risk of re-identification and
keep the utility of the health dataset for analytics processing. Also, anonymisation of a dataset is not forever
as explained below in section 6.2. Recent studies suggest that several methods provide acceptable levels of
privacy maintaining the predictive performance. Carvalho and Moniz [506] indicate that the application of PPTs
combining generalisation, suppression and noise on large datasets, guarantee a user’s high privacy level, a
low risk of re-identification, but have an impact on the performance of prediction. Later on, Carvalho et al. [507]
confirm that the application of different PPTs and the adequate parameterization on large and varied datasets
allow to achieve reliable levels of predictive performance. They analysed the effectiveness of different PPTs in
terms of re-identification risk and predictive performance, based on the statistical properties of the attributes
and concluded that there is a trade-of between the risk of re-identification and predictive performance. Thus,
the anonymisation process is not perfect and a trade-off between privacy and utility is confirmed (Figure 6).

The objective of this anonymisation task is to provide the tools to reduce the risk of re-identification of the
health data as much as possible, keeping the utility of the data. The anonymisation models and the data
anonymisation techniques used for accomplishing anonymisation, are applied on different types of datasets
(structured and unstructured) and must respect the data usefulness and truthfulness, while the data user privacy
is preserved [509]. In terms of privacy, four different types of attributes can be distinguished in a dataset
[510][511]:

32https://digital-strategy.ec.europa.eu/en/policies/data-governance-act
33https://www.europarl.europa.eu/RegData/etudes/BRIE/2022/733681/EPRS_BRI(2022)733681_EN.pdf
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Figure 6 – Trade-off between data privacy and utility [508]

• Identifying attributes uniquely identify a person (e.g., name and surname, social security number).
These attributes will be removed from the dataset.

• Quasi-identifying attributes do not uniquely identify a person, but in combination with other quasi-
identifying attributes can be linked with a person (e.g., age, gender, birthdate, postcode). These attributes
will be transformed by using anonymisation techniques such as aggregation or generalization.

• Sensitive attributes include private information of a person (e.g., disease, medical treatment) protected
by law, and need to be kept private but are necessary for analytics purposes. These attributes will not be
modified, but must not be linked to that person.

• Insensitive attributes can be public and will not be modified.

The basic privacy models commonly used in the medical domain are k-anonymity, ℓ-diversity, and t-closeness:

• k-anonymity [512] is a generalization model, which applies some modifications on the values of quasi-
identifying attributes included in a dataset (i.e., transforms the value into a less specific one). k-anonymity
groups at least k individuals with the same value in a called Equivalence Class (EC). The privacy require-
ment imposed by k-anonymity implies that “any released information should be indistinguishably related
to no less than a certain number (k) of respondents” [513]. It means that each individual will be indis-
tinguishable from k − 1 individuals. Applying this model, the probability of re-identifying an individual is
equal to or less than 1/k. Thus, the higher the k, the lower the probability of identification, but when k is
too high the utility of the data decreases due to information loss [512], [514], [502]. Although this model
protects against identity disclosure, it does not protect against attribute disclosure.

• ℓ-diversity model [515] emerges to cover the k-anonymity limitations, for protecting sensitive attributes. As
an individual could be identified in a dataset with low-frequency values, ℓ-diversity assures that at least ℓ
distinct values must exist for each ℓ group/EC and sensitive attribute [515]. Since this model is vulnerable
to probabilistic inference or corruption attacks, derived ℓ-diversity models such as recursive (c, ℓ)-diversity
model or independent ℓ-diversity principle have been adopted and developed [516], avoiding data disclo-
sure.

• t-closeness model [517] was proposed for overcoming the limitation of both the k-anonymity and the l-
diversity models for improving the user privacy. In this case “the distribution of a sensitive attribute in
any EC is close to the distribution of the attribute in the overall table (i.e., the distance between the two
distributions should be no more than a threshold t)” [517]. Unfortunately, the increase of user privacy is
linked to a reduction of the data utility.
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• ϵ-Differential Privacy (DP) model [518] helps to improve the user data privacy by adding controlled random
noise to a large dataset applying mathematical mechanisms (Laplace noise addition). The final dataset
anonymised after interactive queries to a database, maintains accurate information for data analysis keep-
ing the user privacy. Parameter ϵ is called privacy budget parameter and indicates the noise added; the
smaller value of ϵ, the higher privacy protection. Recently, large companies are using DP for protect-
ing microdata sets. Also, DP is applied in ML for enhancing privacy. An opposite view is suggested by
Blanco-Justicia et al. [519].

• δ-dependency model is protection model for XML [520]. As prior privacy models for XML do not provide a
proper privacy protection, Landerg et al. developed this model, which is based on the dissection method,
i.e., separating quasi-identifying data from sensitive information, and a new privacy property, namely δ-
dependency, which considers the hierarchical nature of sensitive data [520].

The following data anonymisation techniques [521][502] have been used to meet the requirements of the de-
scribed privacy models and can be applied, among others, for anonymising health electronic records and can
also be applied on the SECURED project:

• Generalization replaces the value of a quasi-identifying attribute by another less specific value, making
the data less identifiable. This technique is more adequate for large datasets by using a set of ranges
(discretisation), generalization hierarchies or recoding (global or local). The following can be identified as
subgroups of generalization [522]:

– Global re-coding groups the values into a broader category. If attributes are continuous, discreti-
sation may be applied.

– Top-and bottom coding is similar to global re-coding, but only applied to ordinal categorical at-
tributes or continuous attributes: values above or below a certain threshold are re-coded.

• Suppression implies deleting values of an attribute in a dataset, either a column or a row, thus making it
very difficult to recover the information, hence avoiding re-identification. This technique works well when
used with ML models, but its utility drops when applied on big datasets.

• Character replacement or data masking technique replaces the value of an attribute by a missing value
(NA) or special character (*, ?).

• Perturbation techniques alter the attributes’ values in a dataset creating uncertainty on the original val-
ues. The level of perturbation must be controlled in order to diminish the impact on the utility of data.
Perturbative methods include:

– Noise addition: Addition or subtraction of small values to the actual value of an attribute, for pro-
tecting continuous variables, avoiding linkability.

– Shuffling and swapping: Can be used on ordinal and continuous variables, where the values of
the attributes are randomly interchanged. As it can be easily reversible, it must be combined with
other anonymisation techniques.

• Micro-aggregation is an anonymisation technique leveraging k-anonymity model, creating groups of
data with at least k similar records and swapping the entire cluster by its average value. This technique
diminishes the loss of data when generalization, suppression or perturbation is used.

Besides the PPTs, synthetic data generation is a technique that leverages AI and uses ML, for creating
simulated data files, which are indistinguishable from the real data, maintaining all their characteristics. They
are used for model training and validation in ML. With this approach, it is not possible re-identify the user,
preserving the user privacy. More details on this technique are provided in section 5.

The combination of these models with the techniques and methods described above, helps to enhance the
preservation of the user data privacy [523]. Namely, the use of k-anonymity facilitates the trade-off between
utility and privacy [524]. To determine which techniques are appropriate to preserve the data privacy, it is
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Figure 7 – Data taxonomy based on the structure of data and the appropriate PPT to use on them

fundamental to distinguish between the data formats to be protected. Depending on the structure of the data,
there is:

• Structured data defined by a data model, included in a relational databases or spreadsheets, containing
numbers, dates, strings, among other data types.

• Semi-structured data contains structured an unstructured data, e.g., emails contains sender or recipient
as structured data and the message as unstructured data.

• Unstructured data without a particular organisation, such as text, images, videos or stream data.

Cunha et al. [525] suggest a data taxonomy for mapping the types of data and the appropriate PPT to use.
Figure 7 shows the adaptation of this data taxonomy focused on the health domain mapping the anonymi-
sation techniques can be used for each data type. Basically, the structured data can be anonymised by using
k-anonymity privacy model and its derivations (l-diversity, t-closeness) and DP. DP can be useful for anonymis-
ing unstructured data and Key-value data. For anonymised semi-structured data such as XML and graph data,
δ-dependency [520] and t-closeness [526], can be used, respectively. In the health domain, the electronic health
records can take different forms. On one hand, datasets contain structured data, e.g., diagnosis or the code
related; in this case k-anonymity and variants can be applied. On the other hand, medical images or patients’
report are unstructured data, where DP fits better. De Capitani et al. [527] analyse the use of k-anonymity and
extensions (ℓ-Diversity and t-closeness), indicating their validity for preserving user privacy in different scenar-
ios including big data analytics. In this regard, k-anonymous solutions ensure scalability (considering volume of
data and speed of computation), but the user of k-anonymised datasets from different sources can be an issue.
Also, the combination of k-anonymity and DP can improve the user privacy and the utility [528]. As anonymisa-
tion is not perfect and k-anonymity and DP have some limitations protecting personal information and disclosing
identity, Yamamoto et al. [529] suggest an innovative method named (ϵ, k)-Randomized anonymisation satis-
fying both k-anonymity and DP. Using real biomedical datasets they apply k-anonymisation and randomized
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Figure 8 – Re-evaluation of anonymisation process based on the data utility and the privacy risk

response in sequence. Recently, a k-anonymity privacy protection algorithm has been proposed by Su et al.
[530] for protecting privacy of multi-dimensional sensitive data, to effectively defend against skewness and sim-
ilarity attacks. De Pascale et al. [531] provide the KGEN approach based on the k-anonymity model. This is a
scalable, practical and data-intensive approach using genetic algorithms, dealing with large datasets. Although
this approach has some applicability limitations the initial results are promising.

As described above, anonymisation techniques can be used for preserving privacy of medical information main-
taining the utility of the data for later analytics. But the different data sources and the data heterogeneity limit
the use of these data for cross-border data exchange between different platforms. To increase the effectiveness
of these electronic health records, before anonymisation, it is necessary to harmonise the data into standards
facilitating interoperability. There are several standards in the healthcare domain, supporting interoperability at
syntactic and semantic level, such as HL7/FHIR, OPEN EHR or SNOMED, among others. There are also Eu-
ropean initiatives for the digital transformation in the healthcare sector, such as the OPEN DEI project, working
on interoperability and privacy aspects in the health domain.

The sensitive information collected in the SECURED project must avoid privacy breaches. The described
anonymisation solutions are commonly used for preventing privacy leakage, but the risk of re-identification
persists. Anonymised data can suffer attacks compromising the user privacy [502]:

• Background knowledge attack: the attacker knows a quasi-identifying attribute, identifying the user finally.

• Linkage attack: an untrusted data collector or an external malicious actor can exploit the quasi-identifying
attributes and public datasets to identify a user.

• Attribute disclosure attack: based on the quasi-identifying attributes, the attacker can obtain sensitive
information.

• Membership disclosure attack: The intruder deduces the presence of a person in a dataset.

Anonymisation can be reverted by applying de-anonymisation techniques that leverage powerful computing re-
sources and new technologies or linking anonymous data with additional datasets, obtained from data breaches.
Some aspects related to the assessment on anonymisation and de-anonymisation techniques are provided in
the next section 6.2.

Besides the selection of the appropriate PPT, the process of performing the data anonymisation is very impor-
tant as well; it includes determining the privacy leakage risk, the data structure, type of attributes and evaluates
the data utility in an iterative process [508]. Figure 8 illustrates the process for re-evaluation of anonymisation
based on the data utility and the privacy risk.

Additionally, Andrew et al. [532] presented a new privacy-preserving data collection protocol for anonymised
sensitive health data without the participation of third parties or private communication channels. They applied
the anonymisation techniques (suppression for nominal and numeric attributes, top-and-bottom coding for nu-
meric, noise for float, rounding for numeric and global recoding for integer according to data features, evaluating
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individually their impact [531]. Table 22 summarizes the limitations and the risk of re-identification for some of
the described anonymisation solutions [502].

Anonymisation
solution Allows re-identification Limitations

k-anonymity No. Protect against identity and
attribute disclosure attacks

Privacy is compromised when an attacker has
high background knowledge or there is a poor
variety of values in a group of sensitive at-
tributes

ℓ-diversity No. Protect against attribute dis-
closure attack, protecting sensi-
tive attributes

Does not protect against membership disclo-
sure attacks. If data are very imbalanced is
difficult to create ℓ-diverse dataset

t-closeness Better protection on sensitive at-
tributes than ℓ-diversity.

If data are very imbalanced is difficult to create
a t-close dataset

Differential privacy No. Provides strong privacy
guarantee

The noise added must be increased when
multiple queries are made, for avoiding
tracker attack. Thus, the number of queries
must be limited. Low utility on microdata sets

Suppression No. Useful when used with ML Drop utility in big datasets. Must be applied
together with other anonymisation techniques
for avoiding privacy breaches and mitigating
attacks

Generalization Yes/No. Reduce linkability Affect the utility of the dataset reducing gran-
ularity. Must be applied together with other
anonymisation techniques for avoiding pri-
vacy breaches and mitigating attacks

Noise addition Yes. Appropriate to protect con-
tinuous variables

Level of noise can affect the utility and pri-
vacy. Must be applied together with other
anonymisation techniques for avoiding pri-
vacy breaches and mitigating attacks

Shuffling and
swapping

Yes. Useful for analysing only
one attribute

Must be applied together with other anonymi-
sation techniques for avoiding privacy
breaches and mitigating attacks

Character replace-
ment

Yes. Applied on identifiers at-
tributes

Heavily decrease analytic utility. Must be ap-
plied together with other anonymisation tech-
niques for avoiding privacy breaches and mit-
igating attacks

Perturbation Yes. Improve utility Must be applied together with other anonymi-
sation techniques for avoiding privacy
breaches and mitigating attacks

Microaggregation Yes. Appropriate for continuous
variables

Can affect the computation of some measures
sensitive to outliers

Table 22 – Limitations and risk of re-identification for anonymisation techniques
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6.2 De-anonymisation Attacks

De-anonymisation and re-identification of anonymized datasets have been areas of active research due to the
increasing concerns regarding privacy and data protection. When datasets relating to individuals are shared
or published, there is a possibility that personal information may be inferred from the datasets, even when the
datasets have been anonymized. To ascertain this risk, research has focused on three main types of attacks:
re-identification attacks, membership inference attacks, and attribute inference attacks.

• Re-identification Attacks: Researchers have been focusing on developing sophisticated re-identification
attacks to unveil the identities of individuals within anonymized datasets. These attacks exploit various vul-
nerabilities, such as background knowledge, auxiliary data, and external data sources, to link anonymized
records to real individuals.

• Membership Inference Attacks: Membership inference attacks aim to determine whether a specific indi-
vidual’s data is present in an anonymized dataset. Researchers have been exploring different approaches,
such as ML-based techniques and statistical analysis, to infer membership from released data.

• Attribute Inference Attacks: Attribute inference attacks involve predicting sensitive attributes of individ-
uals from anonymized datasets. For example, by combining multiple quasi-identifiers (e.g., age, gender,
occupation), an attacker may infer additional information about an individual that was not originally dis-
closed.

There are several examples of highly successful re-identification attacks in the literature, and some became so
well known that they were featured on news headlines. In 2006, Netflix released a dataset as part of the Net-
flix Prize competition, which contained anonymized movie ratings from users. Researchers Arvind Narayanan
and Vitaly Shmatikov demonstrated a successful re-identification attack on the dataset [533]. In particular,
Narayanan and Shmatikov showed that by combining the Netflix dataset with publicly available movie ratings
from the Internet Movie Database (IMDb), they could identify individual users with high accuracy. Similarly, in
2006, AOL released a dataset containing anonymized search queries of their users. The intention was to sup-
port research in search behavior analysis. However, the dataset was found to be vulnerable to re-identification
attacks. Journalists at the New York Times analyzed the released dataset and were able to identify individuals
by linking their search queries to known or personally identifiable information [534].

The main reason why re-identification is possible, and in many cases easy, is because information relating to
individuals is highly unique, and therefore highly identifying, even when not directly an identifier (we refer the
reader to the discussion on quasi-identifiers above). An example of this is the seminal work by De Montjoye et
al. [535], who studied a low-resolution dataset containing fifteen months of human mobility data for one and
a half million individuals, and found that human mobility traces are highly unique. The dataset contained the
location of an individual at a coarse temporal granularity (hourly) and with a spatial resolution equal to that given
by a GSM carrier’s antennas (significantly lower than that given, for instance, by GPS). Their results indicate
that four spatio-temporal points are enough to uniquely identify 95% of the individuals. By further reducing the
resolution of the dataset, the authors were able to find a formula for the uniqueness of human mobility traces
given their resolution and the available outside information. This formula shows that the uniqueness of mobility
traces decays approximately as the 1/10 power of their resolution. Hence, even coarse datasets provide little
anonymity. De Montjoye et al. repeated the experiments in a 2015 article [536], where they studied three months
of credit card records for 1.1 million people. Again, their findings indicate that four spatiotemporal points are
enough to uniquely reidentify 90% of individuals. Additionally, knowing the price of a transaction increases the
risk of reidentification by 22%, on average. These findings represent fundamental constraints to an individual’s
privacy and have important implications for the design of technologies, frameworks and regulations aimed at
protecting the privacy of individuals through anonymisation. In particular, they show that even anonymized
datasets that provide coarse information at any or all of the dimensions, provide little anonymity.

Medical and physiological data, resembling biometric data, are even more uniquely linked to a single individual,
and, therefore, are identifying data, which makes any anonymisation more vulnerable to attacks [537]. Ravindra
and Grama [538] focus, for instance, on neuroimaging datasets, and present a de-anonymisation attack rooted
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in the innate uniqueness of the structure and function of the human brain. Worryingly, their attack reveals not
only the identity of an individual, but also the efficacy with which they can perform cognitive tasks. Their attack
relies on matrix analyses techniques that are used to extract discriminating features in neuroimages and is
effective in the de-anonymisation of publicly available databases. Even less data-rich sources of information
can prove very difficult to anonymize: El Emam and Kosseim, in two linked articles that appeared in IEEE
Security & Privacy [539, 540], discuss de-anonymisation risks to patients of prescription data, from Canadian
and US perspectives, where the sale or transfer of prescription data from pharmacies to commercial data
brokers, the processing of the data to analyze physicians’ prescribing patterns, and the subsequent sale of
these prescribing patterns to pharmaceutical companies are common. The propensity of people to employ the
Internet as a diagnostic tool (searching information about symptoms, diseases and possible remedies) also
presents a unique security risk. In the US, services such as WebMD and HealthBoards provide health news,
advice, and expertise, allowing users to post publicly visible helth-related questions, and offering physician-led
responses. Ji et al. [541] expose the fragility of the privacy of those who use online health forums through a
proof-of-concept attack, where they successfully link 347 out of 2805 WebMD users to real-world people, finding
the full names, medical and health information, birthdates, phone numbers, and other sensitive information for
most of the re-identified users.

Membership Inference Attacks (MIAs) focus on determining whether a specific individual’s data is present in
a given dataset, even when the dataset is anonymized or publicly released. The primary objective of a MIA
is to identify whether a specific record or data point in a released dataset corresponds to an individual whose
information was used in the creation of the dataset. These attacks normally exploit statistical properties and
patterns in the released data to make inferences about membership status, and often rely on subtle leakage of
information present in the dataset. Attackers often leverage machine learning techniques, such as classifica-
tion algorithms or black-box model querying, to analyze the dataset and predict membership/non-membership
based on patterns, correlations, or features present in the data. While MIAs can be performed on anonymized
datasets, their most common application domain is the attack of ML models [542]: by querying the model and
observing statistical differences or patterns, attackers can infer whether a specific record was part of the orig-
inal dataset used for training a model or if it belongs to an external individual not included in the dataset. As
ML/DL has attracted broad interest in healthcare and medical communities, the generation of models based
on sensitive patient data (such as images of scans) has become commonplace. However, research into the
privacy attacks on deep networks trained for medical applications, show that inference-attack algorithms can
be used by malicious parties to reconstruct images and text records, simply by using information obtained from
queries to the model. Wu et al. evaluate two inference-attack models, namely, attribute inference and model
inversion, and show that they can reconstruct real-world medical images and clinical reports with high fidelity
[543].

Attribute inference attacks (AIAs) aim to infer sensitive attributes or properties of individuals from anonymized
or aggregated datasets. These attacks exploit statistical patterns and relationships present in the data to make
inferences about sensitive information (attributes or properties of individuals) that was not originally disclosed.
For example, attackers may aim to deduce information such as medical conditions, financial status, political
preferences, or personal traits by analyzing patterns and correlations in the data. AIAs leverage statistical
analysis, machine learning techniques, or domain knowledge to infer sensitive attributes. By exploring patterns,
associations, or dependencies in the released data, attackers make probabilistic judgments about the presence
or absence of specific attributes for individuals in the dataset. AIAs often rely on auxiliary information sources
to enhance the accuracy of their inferences. These sources can include external datasets, public records,
social media profiles, or background knowledge about the population. By combining information from different
sources, attackers can amplify their inference capabilities. Main sources of data that can be vulnerable to
AIAs come from social media [544, 545], but even seemingly innocuous datasets can often be subject to AIAs:
recently, an AIA was used against videogame players statistics [546].

De-anonymisation and re-identification attacks pose significant risks when it comes to healthcare data. Health
data is inherently sensitive, containing personal and potentially identifying information that, if exposed, can have
severe consequences for individuals. There are a number of key risks associated with de-anonymisation and
re-identification attacks on health data:
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• Privacy Breach: De-anonymisation and re-identification attacks can lead to a breach of individuals’ pri-
vacy. By linking anonymized health data to real identities, attackers can expose sensitive health condi-
tions, treatment history, medication usage, and other personal information. This breach of privacy can
have serious emotional, social, and even financial repercussions for individuals.

• Stigma and Discrimination: Re-identification attacks on health data can reveal sensitive information
about an individual’s health conditions, including stigmatized conditions such as mental health disorders,
sexually transmitted infections, or genetic predispositions to certain diseases. This information, if ex-
posed, can lead to social stigma, discrimination, and even negative impacts on personal and professional
relationships.

• Targeted Exploitation: De-anonymized health data can be a valuable target for malicious actors. By
linking health information to specific individuals, attackers can engage in various forms of targeted ex-
ploitation, such as blackmail, identity theft, insurance fraud, or targeted advertising of pharmaceutical
products or treatments.

• Secondary Use and Data Linkage: Re-identification attacks can enable the linkage of health data with
other datasets, amplifying the potential risks. Combining health data with other personal data sources,
such as social media profiles or financial records, can provide a comprehensive and intrusive view of an
individual’s life, enabling further privacy violations and potential harm.

• Trust Erosion: Privacy breaches and the risk of re-identification can erode public trust in healthcare
systems, research initiatives, and data sharing practices. This lack of trust can deter individuals from
participating in research studies, sharing their health information, or seeking appropriate medical care,
ultimately hindering medical advancements and public health efforts.

To mitigate these risks, it is crucial to implement robust privacy protection measures when handling health data.
This includes employing strong anonymisation techniques, which have been proven to be secure against known
attacks. As is often the case in cyber security, research on de-anonymisation and re-identification attacks bene-
fits data security by uncovering vulnerabilities and risks associated with anonymized datasets, thereby enabling
the development of robust privacy-preserving mechanisms and defenses [547]. Through studying these attacks,
researchers gain insights into the limitations of anonymisation techniques, identify potential weaknesses in data
handling processes, and devise strategies to mitigate the risk of re-identification. This research helps in enhanc-
ing the security of sensitive data, improving privacy-preserving algorithms, establishing stronger anonymisation
standards, and promoting responsible data practices, contributing to a more secure and privacy-conscious
cybersecurity ecosystem.

6.3 Existing Techniques and Tools
This section provides an overview of the different tools and techniques devoted to data anonymisation (sec-
tion 6.3.1) and data de-anonymisation (section 6.3.2). Also, a short introduction to interoperability standard
tools is provided.

6.3.1 Anonymisation techniques and tools
Recently, several commercial and open-source tools have been developed for protecting sensitive data. The
software presented in this section, includes open-source tools covering the models and techniques described
in section 6.1, applied on the health domain in different projects and studies. Open-source tools maintained, at
least during the last two years, have been considered [548].

Amnesia [549]: Amnesia is an online anonymisation tool for anonymising personal and sensitive data included
in a dataset (structured data). Amnesia supports k-anonymity and km-anonymity privacy models, using gen-
eralization or suppression techniques. It provides a semi-automated anonymisation process for structured and
unstructured data (set-value data). It accepts input datasets files in csv format. Some of the source code is
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based on ARX [550]. It is able to anonymise sensitive metadata information from DICOM images. It is writ-
ten in Java providing a ReST API, documentation, and a web-based Graphical User Interface (GUI). A GitHub
repository34 is available. It can be deployed on Windows, Mac OS or Linux operating systems

Anonimatron [551]: Anonimatron is an open-source, extendable data anonymisation tool. This tool anonymises
structured database and files, can de-personalize or anonymize the data by replacing every different value in
the database by a synonym. Anonimatron supports different data bases, is easy to configure and able to gener-
ate fake data (e.g., email addresses, names or unique identifiers). It is written in Java and running on Windows,
Mac OS or Linux operating systems. It is also available as a library. It is available to developers through a
GitHub repository35.

ARX [550]: “ARX is a comprehensive open-source software for anonymizing sensitive personal data. It sup-
ports a wide variety of (1) privacy and risk models, (2) methods for transforming data and (3) methods for
analysing the usefulness of output data.” It provides privacy models, e.g., k-anonymity, ℓ-diversity, t-closeness,
k-map, δ-disclosure, differential privacy, among others. It allows for combining these models with anonymisation
techniques such as generalization, aggregation, random sampling, microaggregation, top and bottom-coding
or suppression. This generic anonymisation tool, has been widely used in the health domain for anonymising
health datasets (structured data) in several studies and projects ([502], [552], among others). ARX includes
a desktop application, is written in Java, and it provides an API and broad documentation. A public GitHub
repository36 is available and regular software updates are issued, which is very useful for developers.

DANS [552]: The Data anonymisation Service (DANS) is an anonymisation tool, developed by Atos in the
context of the medical data exchange demonstrator of the CyberSec4Europe37 H2020 project. DANS is based
on the open-source libraries provided by the ARX tool [553]. It accepts input datasets files in csv or xlsx format.
DANS makes it possible to mitigate tracking and user re-identification by anonymizing sensitive personal data,
leveraging k-anonymity and l-diversity privacy models, which enable the application of some privacy criteria
over a particular dataset, protecting biomedical data against data disclosure. DANS is a modular solution
(webapp and server side) offering an easy-to-use user interface facilitating the anonymisation process to low-
skilled privacy users. To this end, additional privacy models and new features (such as differential privacy, and
utility and privacy risk), and GUI improvements, are envisaged to be included in the DANS service. DANS tool
is offered in two flavours to be utilized by the data providers:

• A Java library to be integrated in the data provider legacy systems. Also, this option allows the use of
PPTs on the Internet of Things (IoT).

• An anonymisation service to be deployed on the data provider premises or in a trusted third party, exposed
as a RESTful API. In this case, a web-based GUI is provided to the user for facilitating the anonymisation
process, improving the user experience. It has been deployed and validated by health end-users [554].

µµµ-ANT [555]: µ-ANT is a microaggregation-based tool for protecting structured dataset, fulfilling k-anonymity
and t-closeness. It is a standalone application written in Java accepting input files in csv format, and can be
deployed on Windows, MacOS and Linux operation systems. A public GitHub repository38 is provided.

PrioPrivacy [556] is a desktop application implemented in Java as an extension of ARX tool [550]. It leverages
the k-anonymity model prioritising quasi-identifier attributes. It is intended to anonymise structured data and it
provides a GitHub repository39

sdcTools [557]: sdcTools is software developed for Statistical Disclosure Control (SDC). Also, it can anonymise
microdata. This free software is supported by Eurostat40. A GitHub repository41 is maintained and it contains
the ARGUS software comprised by two modules, namely mu-argus and tau-argus, including a Java interface,
and the sdcMicro tool:

34https://github.com/dTsitsigkos/Amnesiaa
35https://github.com/realrolfje/anonimatron/tree/master
36https://github.com/arx-deidentifier/arx
37https://cybersec4europe.eu/
38https://github.com/CrisesUrv/microaggregation-based_anonymisation_tool
39https://github.com/alex-bampoulidis/prioprivacy
40https://ec.europa.eu/eurostat
41https://github.com/sdcTools
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• µARGUS (mu-argus) [558]: mu-Argus is an open-source software devoted to creating safe micro-data
files. It is written in Java using anonymisation techniques such as global recoding, top and bottom coding
and local suppression. These methods are applied iteratively in a manual way. mu-argus accepts input
datasets in csv and SPSS format. It provides a GUI and it can be deployed on Windows, MacOS and
Linux operating systems. It can also be used to generate synthetic data.

• τττ -ARGUS (tau-argus) [559]: tau-argus is an open-source software designed to protect statistical tables.

• sdcMicro [560]: sdcMicro is an open-source software for anonymising microdata files. It is written in R,
C and C++. This tool uses k-anonymity (and derivations e.g., l-diversity) and global recoding, top and
bottom coding, microaggregation, swapping and suppression, as anonymisation techniques, which can
be applied manually in an iterative way. It provides a GUI to users for statistical disclosure control, showing
details on individual risk, information loss and data utility. It can be deployed on Windows, MacOS and
Linux operating systems.

There are other open-source anonymisation software tools, e.g., UTD Anonymisation toolbox42, CAT43, Open-
Anonymizer44; however, they provide restricted privacy models or techniques and currently are not maintained.
Also, there are professional tools such as aircloak45 or Privacy Analytics Eclipse46 used in the health domain,
however we focus on open-source tools, as they better fit the SECURED objectives.

Interoperability standard tools and process: The heterogeneity of Electronic Health Record (EHR) data
is a drawback for sharing clinical records between different hospitals or doctors in case of emergency or the
patient move from one city to another or even moving abroad. Also, the need of using clinical records for
research purpose implies that interoperability and preserving patient privacy is a challenge. The harmonization
to standards such as HL7/FHIR, OPEN EHR or SNOMED is needed. Different initiatives have been conducted
in this direction.

The MODELHealth project [561] obtains health data from the hospital databases harmonizing these data to
HL7/FHIR standard and then apply the k-anonimity privacy model for data anonymisation, demonstrating that
an adequate harmonization and anonymisation can be performed, while preserving data privacy.

The HAPI FHIR47 open-source solution, is an implementation of the HL7-FHIR standard written in Java, for
facilitating the interoperability. It comprises a client, including an Android client, and a server module providing
a REST API.

At the end of 2022 a new privacy standard has been released, namely the ISO/IEC 27559 Information secu-
rity, cybersecurity and privacy protection – Privacy enhancing data de-identification framework [562], providing
“a framework or identifying and mitigating re-identification risks and risks associated with the lifecycle of de-
identified data”. This standard is based on the ISO/IEC 20889 [563] focused on the de-identification techniques
applied to structured datasets, establishing a standardised terminology, a description of the de-identification
techniques and how they can reduce the risk of re-identification. These standards will be considered during the
development of the anonymisation tools.

42http://www.cs.utdallas.edu/dspl/cgi-bin/toolbox/index.php?go=home
43https://sourceforge.net/projects/anony-toolkit/
44https://sourceforge.net/projects/openanonymizer/
45https://aircloak.com
46https://privacy-analytics.com/eclipse-software/
47https://hapifhir.io/
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6.3.2 De-anonymisation techniques and tools

Contrary to anonymisation techniques, for which general and data-agnostic open-source implementations are
relatively frequently available, de-anonymisation attacks are often specific to a given data type, and, in many
cases, dataset. De-anonymization techniques are tailored to specific data types or datasets due to the distinct
characteristics, structures, and vulnerabilities associated with each type of data. The representation and format
of data vary across types, such as structured or unstructured data, requiring de-anonymization techniques to
account for these differences. Statistical properties specific to each data type, such as temporal patterns in time-
series data or structural properties in graph data, play a crucial role in the de-anonymization process. Contextual
factors, background knowledge, and the level of data granularity or aggregation also impact the choice of de-
anonymization techniques. Additionally, domain-specific considerations, such as financial or genomic data,
require specialized approaches to address unique privacy risks. Consequently, de-anonymization techniques
are tailored to the specific attributes and characteristics of the data type or dataset in order to achieve effective re-
identification. For reference, however, we list here some techniques and frameworks which have demonstrated
a relatively higher level of generality.

De-Health [541]: De-Health is an online health data De-Anonymization (DA) framework aimed at identifying
individuals that post health-related questions on online medical fora such as WebMD and HealthBoards.

Hidden Markov Model (HMM) techniques [564]: An HMM is a statistical tool used in modelling sequential
observations (visible) that probabilistically depend on a hidden sequence of events (hidden states). As such,
it can be particularly useful for de-anonymisation. Attacks based on the HMM include Forward de-anonymiser
and the Kullback-Leibler Divergence de-anonymiser [564].

6.4 Comparisons and Evaluation of anonymisation Approaches and Tools

Table 23 [525] [565] [548] presents the comparison of the different anonymisation open-source tools described
in section 6.3.1, considering several aspects related to the privacy models and the techniques provided, the
type of data to anonymise, the utility and risk evaluation, the existence of user interface and API, programming
language employed, last update and the complexity to use.

Tool/SW Privacy
model/
technique

Data type Evaluation GUI/
Web
App

API Language OS Last
Update

Priv Util
Amnesia k-anonymity

km-
anonymity

Structured
(tabular)
Unstructured
(set-value)

x x x/x - Java
JavaScript

Windows
Mac OS
Linux

2022

Anonimatron Replacement Structured
(tabular)

- - x/- - Java Windows
Mac OS
Linux

2021

ARX k-anonymity
l-diversity
t-closeness
k-map
δ-disclosure
DP/ Gen-
eralization
Suppression
Microaggre-
gation

Structured
(tabular)

x x x/- x Java Desktop
app

2022
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DANS k-anonymity
l-diversity
t-closeness/
Gener-
alization
Suppression
DP*

Structured
(tabular)

x x x/x x Java
JavaScript

Windows
Linux

2022

µ-ARGUS Noise
addition
Suppression

Structured
(microdata)

x - x/- - Java C++ Windows
Mac OS
Linux

2021

sdcMicro k-anonymity
Noise
addition
Suppression
Shuffling

Structured
(microdata)

x x x/- - R Windows
Mac OS
Linux

2021

PrioPrivacy k-anonymity Structured x x x/- - Java Desktop
app

2021

µ-ANT k-anonymity
t-closeness

Structured x x -/- x Java Windows
Mac OS
Linux

2020

* Envisaged to be provided during the SECURED project

Table 23 – Comparison between described anonymisation tools.

The applied methodology, the selected privacy model and the technology included in a tool for anonymising
health data, must take into account the data type, the expected privacy and utility level to achieve, the information
loss during the process, as well as the possible adversarial behaviour and attacks. Haber et al. [548] recommend
the use of “ARX for automated anonymisation of relational data and Amnesia for automated anonymisation of
set-valued data, and sdcMicro as a library and tool for mostly manual anonymisation processes”. Although DP
limits the number of queries and the utility decreases when it is applied on microdata, it is of increased interest,
as it provides a stronger privacy guarantee, independently of the prior knowledge of the attacker and avoiding
linkage attacks. Therefore, DP is well-received by the research community. Also, big tech companies apply
DP in their processes for ensitive information protection. Also, DP can be used in FL and the generation of
synthetic data. The DANS tool (based on ARX) as a modular solution, is a very good candidate for adoption as
an anonymisation tool in the SECURED project, as it covers a wide range of privacy models (k-anonymity, ℓ-
diversity, t-closeness, differential privacy) to be applied on health data generated by the different pilots, and also,
utility and privacy risk features to evaluate the risk of re-identification. The modular architecture allows to include
new models, techniques and features needed for improving the anonymisation process. Additionally, a GUI and
a web app which ease the anonymisation process to non-technical people improve the user experience of the
data providers. Thus, the selection of DANS tool is based on the broad range of privacy models, techniques and
evaluation features that this solution will provide, maintaining the utility of the data, while privacy is sufficiently
protected.
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6.4.1 Related State-of-the-Art Gaps

Based on the literature review [566][525][567] the following table provides the challenges, gaps and future direc-
tions need to be addressed on the anonymisation field. Some of them will be addressed during the development
of SECURED project. Regarding gaps and challenges detected:

Finally, based on the section analysis, in Table 24 some preliminary State-of-the-Art Gaps have been identified.

Challenge
Gap ID

Description Flows Related SECURED Compo-
nent(s)

SoTA-
GAP-20

It is necessary to find the pri-
vacy risk and data utility trade-
off for different health data types.
There is none publicly available
tool able to implement and eval-
uate anonymization solutions for
heterogeneous data types in the
health domain (microdata, big
data, free-text data, images, trans-
action data).

Data Data Transformation Engine,
Anonymization Service & Toolset

SoTA-
GAP-21

There is a lack of a unified tool that
is able to automatically suggest an
anonymization solution depending
on the data type.

Data Data Transformation Engine,
Anonymization Service & Toolset,
Anonymization Decision Support

SoTA-
GAP-22

Lack of good anonymisation meth-
ods for text documents.

Data Data Transformation Engine,
Anonymization Service & Toolset

SoTA-
GAP-23

It is necessary to apply the existing
methods in real health scenarios

Data Data Transformation Engine,
Anonymization Service & Toolset

SoTA-
GAP-24

It seems that there is a lack of ma-
ture privacy mechanisms for ap-
plying on collection time, consider-
ing privacy, utility and efficiency.

Data Data Transformation Engine,
Anonymization Service & Toolset

SoTA-
GAP-25

There is a lack of standardized and
universal definition of privacy and
standard methods to compare the
existing anonymisation solutions.

Data Data Transformation Engine,
Anonymization Service & Toolset

Table 24 – Anonymization and De-Anonymization main State-Of-the-Art Gaps

Regarding the future directions there are some research aspects to be considered for improving the anonymi-
sation tools and the privacy preserving process:

1. Research on vulnerability to different threats and attacks.

2. Research on new methods and improved algorithms of anonymisation to be applied on health domain.

3. Research on the use of cryptographic algorithms for anonymisation
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7 Preliminary SECURED Components and Technical Require-
ments

7.1 User/Technical Requirement Collection Methodology

The best practice to promote service availability is to eliminate the obstacles that impede it in the first place as
well as encourage sustainability-driven solutions and innovation in general [568]. However, in order to identify
these obstacles and design optimal solutions, it is necessary to take one step back and address the whole
problem in a more user-centric manner. The notion of a User Journey (UJ) or a Customer Journey (CJ) as the
majority of the academia tends to call it, is a relatively new idea in system design which focuses on the entire
User Experience (UX) [569], constantly identified by more and more scholars [570] as the optimal method of
putting together intuitive, easy to use platforms with simple stories which increase end user engagement and
consequently their overall experience. But then the next question emerges; what is UX? User Experience (UX)
is defined as a person’s subjective response, interpretation and consequent interaction with a product, system
or service. It is directly linked with the person’s perception of utility, ease of use and efficiency, therefore can be
further divided into several response types like cognitive, emotional, behavioral, sensory, and social [571, 572].
As service providers gain momentum in real-world, large-scale economies and markets, the service industry
attempts to address challenges related to user-centric, UX-boosting design with the optimal goal being no other
than to elevate service sustainability [573] via satisfied and loyal end-users. However, despite the number and
variety of studies on sustainability in services, there is little study on tools that may improve sustainable service
design [574] and this is where the overall User Journey technique comes into play.

7.1.1 User Journey Approach

7.1.1.1 Origins of the User Journey

Back in the 1990s as the importance of the service sector grew, corporations turned into service operation
optimization as a method to maintain their competitive advantage. Researchers reached the conclusion that
the more satisfied customers feel about their experience in the service operations system, the more compet-
itiveness the system possesses, as stated in [575] and consequently customer satisfaction became a major
indicator of service operation sustainability [576]. After identifying low-quality services, providers attempted to
remediate some of their fundamental flaws, but this turned out to be a huge challenge since there was little to
none systematic qualification to ensure that user demands were properly treated, in a holistic, logical and scal-
able manner. The first attempt to address this limitation was made by Shostack [577], who created a service
blueprint scheme depicting the broader concept of service operations. The service blueprint pinpoints customer
interactions during the service operation processes and is used to split activities between the front office, where
customers receive concrete evidence of the service, and the back office which is more or less hidden, outside
the customer’s view. One of the huge benefits of the service blueprint approach is its ability to simplify problem
solving through timely failure point identification, while at the same time pinpoint opportunities and methods to
enhance user perceptions [578]. However, service blueprint also has its limitations, mostly due to its design
that remains a “conventional work-flow concept dominated flowchart” [579], unable to focus on the entire ser-
vice experience of the customer or the service operations problems. In essence, the service blueprint reveals
the failure of not providing researchers and practitioners with accurate and detailed information concerning the
customer service experience, remaining provider- rather than customer-oriented [580]. The major shift of the
service blueprint model toward a customer-oriented tool that visually describes the concept of service operation
was carried out in 1999 by Tseng, Qinhai, and Su [579] which introduced the Customer Journey (CJ) framework
by creating an innovative tool for service operations improvement by objectively mapping the service experience
of customers. This was the first introduction of the CJ term in the literature.
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7.1.1.2 Definition Evolution

As stated in [581] since the first references to CJ made by Tseng et al. [579], many definitions as well as
new perspectives have emerged. Yet, the term itself remained the same until Marquez et al. [582] replaced it
with User Journey (UJ). The specific approach seems more appealing for platform designers and framework
architects, since it is not just paying customers those which interact with the platform/framework but a broader
set of active users. However, the term Customer Journey (CJ) never lost its momentum against the User
Journey (UJ) one, therefore for the scope of the specific analysis the former will be mostly utilized. Prior to
2010, scholars considered UJ as just the contact between the user and the service during the purchasing
process [583]. Authors in [584] expanded this idea by stating that UJ can be divided into a sequence of events
which customers follow to discover, interact and ultimately select firms, products, and services. This newly
introduced interactive approach led researchers to create new methods for simplifying the rather complicated
process of UJ analysis, which in turn ended in the creation of three distinct UJ phases by Lemon and Verhoef
[569], namely “the pre-purchase, purchase, and post-purchase stage”. This became the bedrock on top of
which the contemporary definition of stages was later introduced. Moreover, the term Customer Experience
(CX) also appeared in the definition of UJ, given the fact that the two terms are not only related but somehow
interdependent. Currently, it became clear that it is essential to analyze CX in order to properly conceive UJ
[585], while at the same time psychological factors linking UJ with emotional aspects were also introduced [575].
This approach strengthened the interrelation between CX and UJ, making Rudkowski et al. [586] to state that
“the past fifty years of research has contributed to a holistic understanding of CX as a decision-making process
or journey”.

7.1.1.3 Key Characteristics

As researchers attempted to approach UJ in a holistic manner, the actual definition became much more complex
and the following new terms were incorporated: stages, touchpoints, and personas [586, 587], each at a different
phase. More specific, Kranzbühler et al. [587] build onto the existing theoretical framework for the touchpoints
[569, 575], to establish (i) satisfying (ii) dissatisfying and (iii) neutral touchpoints [587], as well as online–offline
ones [586]. Backed up by an explanatory definition, this approach highlighted the need for strict contact points
between users and services. Yet, it was only until recently that the aforementioned, strictly defined sets of terms
were utilized in the UJ definition and are now considered as its de-facto characteristics.

Stages. Tracking the individual contact points between the service and the user, is vital for understanding
the overall user behavior which consequently provides insights regarding the experience. These contact points
are known as “touchpoints” and may be used to identify cognitive, emotional, behavioral, sensory, and social
responses, as described by Lemon and Verhoef [569]. These responses, which occur during the User Journey,
when combined, map the overall customer experience in a holistic manner. It is therefore possible to define
stages as the snapshots of a specific Customer Journey, which also contain the contact points between the
user and the service as well as the generated responses in each contact point. However, it must be clarified
that in a User Journey, the number of stages and as a result the number of touchpoints and experiences are not
precise, but directly dependent on the type of the journey. In essence, the stages are differentiated according
to journey type; for instance, for the travel and tourism industry where users are essentially customers, Gretzel
et al. [588] and Wang et al. [589] divided the User Journey (used under the term Customer Journey) stages
into the pre-trip phase, the en-route and on-site phase, and the post-trip phase. Similarly, when designing
online marketing applications, directly considering users as potential customers, Lemon and Verhoef [569],
through their extensive analysis of the CX, refer to the User Journey stages as pre-purchase, purchase, and
post-purchase. However, the broader scope of system design dictates that users should be treated slightly
different than customers and therefore their stages must be linked only with the user/service engagement flow
and will be consequently mentioned as such for SECURED project.

104



D4.1 - State of the Art and initial technical requirements

Touchpoints. Touchpoints were first described in the scientific literature as encounters between providers
and customers. Lockwood and Jones [590] described these encounters as interactive variables, specifically
the “personal characteristics, perceptions of each other, social competence, and needs and objectives” between
customers and providers. In the 1990s, researchers highlighted the social view of such encounters with respect
to service providers, contact personnel, and customers [591]. They focused on the quality factors that affect
said encounters during the service experience stages. However, the best definition of touchpoints is that of a
direct or indirect contact [592, 593] where users interact with the service/product delivered to them via online
platforms or other methods of personal interactions [594, 595]. As stated in the previous section, users form an
experience at each touchpoint [596], which is then aggregated into the User Journey in order to generate the
total CX [569, 597].

Personas. Personas are descriptive models of archetypal users derived from user research. They consti-
tute an amalgam of multiple individuals with similar goals, motivations and behaviors. To properly represent
the widest possible variety of users in any product or service scenario, personas need to be generated based
on goals and behaviors rather than demographics or market segments [581]. To encourage realism and fur-
ther increase user engagement, each persona could be potentially provided with a realistic name, a photo and
some form of demographically-obtained data. Authors in [598] make the distinction between data-driven and
assumption-driven personas. The former are formulated based on the principles of user research therefore
their validity is extremely high and accurate. However, when there is little time to collect and analyze data,
assumption-based personas are often utilized to ensure who the user might be, which are their likely goals and
motivations and sometimes even predict their behavioral patterns. The introduction of personas in the design
of a product or service can be a powerful tool to understand and visualize user goals, motivations and overall
behavior. The authors in [592] investigated the suitability of design practices when it comes to user data format
acceptance by designers. Preference to well-designed, visually stimulating, flexible, open-ended and easy to
use methods was proven as well, however, in the same work authors concluded that similar approaches may
not be suitable for presenting detailed technical information since focusing on archetypal users may lead to loss
of generality for the rest of the population. Thus said, it appears that as a project moves from the requirements
and concept generation stages to the product development stage, personas may need to be supplemented
by more specific data regarding the user capabilities. Especially for medical applications, additional limitations
should be taken into consideration. For instance, older users are often treated by designers as a homogeneous
group, whilst in reality this is far from accurate. Age combined with life experience and physical capability limi-
tations can be a differentiating factor which should be taken into consideration, as designers fail to understand
the detrimental effect of aging to the physical and cognitive ability of users. In most cases, Personas can be
aggregated in larger groups called Sets, which can be utilized to address broader attributes of a whole cate-
gory of users, thus highlighting lifestyle diversity. This addresses the misconception that simple personas are
adequate to represent a large enough portion of the population, an approach that sometimes leads to poorly
designed systems, with limited usability. Data-driven personas remain of significant value and engaging, as-
sumption driven personas tend to provide a persuasive and compelling vision of users that tackles potential
scarcity of real knowledge on user needs. One should always remember that at its inception, the persona pro-
cess was born from the necessity to include end user needs within the software applications of digital products,
as well as to add detail of user requirements within the design process. Yet, the underlying principles make
their application suitable to just about any field of design.
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7.1.2 User Journey Mapping Technique

7.1.2.1 Practical Application of User Journey

The theoretical background of User Journeys led to the formulation of a methodology for depicting user behavior
in a systematic manner, the User Journey Mapping (UJM) technique. This is more or less the practical appli-
cation of the User Journey, originally described by Crosier and Handford [599] as a simple method for market
research. UJM was only used for marked research until the scientific community “rediscovered” it, modify it ac-
cordingly and started using it in contemporary system design. In this brave new era of User Journey Mapping,
many definitions have been provided, yet all tend to converge into proposing that UJM consists of the visual
depiction [582, 598, 600] or visual representation [575, 592, 601] of a User Journey. Even though scholars
agree on how exactly UJM is visually linked with User Journey, there are different approaches regarding its
context and consequently which are the prime elements that any perplexed system analysis should begin with.
Authors in [581] introduced three main categories in an attempt to include all existing definitions, that address
User Journey Mapping as

• a function of Customer Experience (CX), where User Journey Mapping is only a depiction of the service
delivery process from the user perspective [575], only focusing on the critical factors with a direct affect
to its overall experience [592];

• an aggregation of touchpoints, where User Journey Mapping is just a simplistic presentation of the touch-
points used by users to interact with the service/system [598, 600];

• a direct, one-on-one User Journey representation and nothing more, placing the system designer in charge
of the entire decision-making process [602], the presentation of stages a user is able to navigate into and
the proper definition of the corresponding touchpoints.

There is little to no doubt that User Journey Mapping is an invaluable tool for assessing user behavior [582,
599, 601] as well as for service enhancement from the ground up. Due to its inherent affinity with User Journey,
it allows system designers to gain significant insight on user motivations and behaviors, while in the same
time tracks user responses to specific services [599]. By tracking predefined touchpoints, interaction channels
and system functions, user experience is revealed, thus allowing practitioners to essentially “walk in the user’s
footsteps” [582]. Additionally, User Journey Mapping also boosts service delivery design as it allows architects
to visualize it properly, map and properly decode all the steps required to perform a given task, capture detailed
traces of user/system interaction and interpret negative or positive emotions [603]. As stated in [604], User
Journey Mapping is a tool that greatly enhances the design and assessment of UX in a holistic manner.

7.1.2.2 User Journey Mapping Guidelines and Best Practices in SECURED

Under the auspices of SECURED Project, we will follow the approach which considers the User Journey Map-
ping as a visual representation of the overall experience a user has when interacting with a platform, a framework
or a service. Without loss of generality, the specific definition allows us to focus on the pragmatic system design
but from a more user-centric perspective. The main goal remains the same: tell the story of the user interaction
across all touchpoints, reveal design flaws, technical and/or implementation issues as well as UX-related inef-
ficiencies. Real-world examples and past experience in system design led to a gradual approach containing
well-defined steps for creating a User Journey map. More specifically:

Step 1: Set clear objectives for the user journey map. There is no recipe for every system nor a “one-size-
fits-all” approach. It is of paramount importance for a user journey map to have crystal clear objectives to begin
with. This will provide some perspective on the problems the system designer tries to solve, as well as ease up
the result extraction process, which will remain focused and crisp.

Step 2: Identify users and define their actual goals Identify the audience for a service, a platform or a
framework greatly eases its design. There are vast differences in systems focusing on novice rather that highly
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experienced users, each with varying results in UX as a whole. Taking some time to make proper assumptions
regarding the personas of the user journey map is a good start and will allow the inclusion or exclusion of corner
cases and scenarios of limited value for a user group.

Step 3: Identify all possible user touchpoints User touchpoints differ for each use case, platform, service or
framework architecture. It is therefore essential to determine them by analyzing user/service interaction. The
starting point is to always consider the needs of the target audience and consequently decide initial touchpoints
they could potentially use. Pretend you are the user and track down all possible interaction one may have. Re-
view user logs (if any) and categorize identified touchpoints for further analysis and consideration. Last but not
least, touchpoints evolve in parallel with a service/platform, it is therefore important to constantly update/refine
them for further increasing user experience.

Step 4: Identify user actions for every stage of the journey This one is straightforward and revolves around
user actions and specifically what is a user doing in each step of a predefined path inside the overall User
Journey. Checking a system from a user perspective as they navigate the process of using the provided ser-
vice/platform is always a useful exercise because it helps designers understand where things can improve or
where the experience is suboptimal. For best results, a user journey map should also note the channels in
which these interactions happen to ensure that users are properly engaged.

Step 5: Identify potential changes which may compromise the overall flow, technical obstacles or pain
points Where are users running into problems? What’s stopping them from getting the best overall experience?
Answering these questions allows system designers to identify improvement opportunities for augmenting user
experience throughout the journey. Identifying whether users run into problems during a certain process, sce-
nario, or service leads to address the stumbling blocks which compromise UX and lead to a seamless User
Journey.

Step 6: Identify opportunities for improvement Constant iterations of fixes for specific issues, bugs, experi-
ence pain points and compromised services are extremely important and will boost functionality as a whole. A
properly crafted user journey map facilitates improvements in both short and long runs.

In a nutshell, the scope of User Journey Mapping is to reveal if user goals and expectations are met, identify
optimal solutions to existing issues and improve the overall user experience for a specific service, platform or
framework. When designing a user journey map it is essential to focus on the bigger picture, try to understand
what users want to achieve, which are their goals and most importantly: have a proper definition for success.
Last but not least, try to remain platform-agnostic, since the main scope is to define the actions, users make to
interact with the framework, rather than to create lists of specific functions with no additional value.

7.2 Preliminary SECURED Architecture and Component Identification

In order to properly identify the SECURED architecture components, it is of paramount importance to revisit the
project’s concept. In SECURED, our intention is to offer a one stop collaboration hub able to provide a secure
and trusted environment for decentralized, cooperative processing of health data through SMPC techniques as
well as generation of new, synthetic data and anonymisation assessment to health data providers and users.
Our vision is to facilitate the broad adoption of health datasets across Europe by making the interconnection
between EU health data hubs, the health data analytics research community, health application innovators (like
Healthcare SMEs) as well as end users. Apart from an SMPC and anonymisation framework (with appropriate
tools and services), the proposed collaboration hub will provide the means to engage its members in the EU
health data community through proper training and well as synthetic data to stem health data analysis research,
medical education and an increase of the associated datasets volume and considerably reduce their bias. The
SECURED vision is to kick start an EU cross-border health data collaboration ecosystem for data providers,
data researchers and innovators that will be able to produce new AI-based data analytics solutions and stem
innovation. The overall concept is depicted in Figure 9.

In addition, the SECURED Description of Actions (DoA) revealed that certain tools as well as specialized ser-
vices will be available to all users upon registering to the aforementioned collaboration hub. More specifically:

SECURED Toolbox
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Figure 9 – SECURED Federation Infrastructure concept

Figure 10 – Preliminary SECURED Architecture
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• SMPC Hardware-assisted software library, for facilitating the execution of highly scalable SMPC solu-
tions through cloud-based SMPC and/or dedicated hardware accelerated components for heterogenous
MPSoC systems (that include multiple CPU cores, GPUs and FPGA fabric)

• SMPC Transformation, a tool for analysing existing AI-based Data Analytics solution, identify the com-
ponents that can be made SMPC compliant and using the SMPC software library to transform the existing
solution into a SECURED compliant tool that can operate collaboratively within a SECURED cluster using
that private datasets of the cluster’s parties and the SECURED Federation

• Anonymisation tool, which can be used at the member’s premises in order to anonymize private datasets
and AI models before sharing the with other parties

• Anonymisation assessment tool, for assessing the level of anonymity that is achieved in an anonymized
dataset

• Dataset Bias quality assessment, a tool for identifying how biased is the dataset and produce a bias
score that will afterwards be associated with the dataset

• Dataset Unbiasing tool, which can be used to enhance a biased dataset with synthetic data in order to
reduce the bias score

SECURED Services

• Synthetic Data Generator, delivering “synthetic data-as-a-service” support to registered users, through
a direct link with the corresponding service operating at the SECURED infrastructure backend.

• Anonymisation decision support, a dedicated assistance for choosing the appropriate anonymization
technique that best fits the characteristics of a health dataset.

• Cross-border data processing legal/GDPR compliance, a dataset-specific legal framework to ensure
dataset compliance with EU legislation per case.

• Privacy-preserving AI-trained model "marketplace", a repository of anonymized, unbiased, trained
models that have been produced by the SECURED federation.

It is therefore evident that the overall SECURED architecture is a highly perplexed amalgam of interconnected
services, which will be henceforth termed as the SECURED Federation Infrastructure.

7.2.1 SECURED Federation Infrastructure

The broader SECURED architecture contains several interconnected services which cooperate to provide the
overall platform functionality. Purely from an architectural standpoint, these services are contained inside the
SECURED Federation Infrastructure, more or less an umbrella-entity that allows us to define the boundaries of
the provided solution as well as to properly identify the necessary communication interfaces and flows that need
to be implemented. All services inside the SECURED Federation Infrastructure have an inherent interaction
ability only limited by networking configuration, simply for security reasons.
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7.2.2 Identity, Security and Monitoring Infrastructure

Users trying to access the Security Federation Infrastructure need to be authenticated and monitored, while
unauthorized user access must be prevented. The Identity, Security and Monitoring Infrastructure is the ar-
chitectural node responsible for federated user authentication, delegated fine-grained authorization ensuring
role-based access to corresponding services, user management and last but not least communication chan-
nel encryption. In addition, the node incorporates the centralized logging repository for aggregating logs from
the distributed system, a dedicated monitoring/alerting mechanism and a visualization entity for transforming
system-oriented information into a more user-friendly format

7.2.3 Data Ingestion Module

The specific entity is responsible for accurate, timely and error-free data transfer from all external data sources
to the data repositories and/or data transformation functions of the SECURED Federation Infrastructure. The
external data sources range from non-structured (DICOM images, .jpeg files or .documents), semi-structured
(.csv, logs, .json and xml files, all considered as loosely typed data formats) and fully structured (i.e. large
datasets retrieved from relational databases with a pre-defined schema and strong structure) synchronous
datasets to asynchronous streams which may require dedicated parsers for proper identification and ingestion.

7.2.4 SECURED Knowledge Base

The SECURED Knowledge Base will act as the major data storage module of the broader SECURED Federation
Infrastructure. Due to the vastly heterogeneous data that the specific module needs to handle, it must integrate
several data storage solutions, each with a predefined scope and functionality.

7.2.4.1 SECURED Data Lake

The definition of Data Lake is that of a centralized repository designed to store, process, and secure large
amounts of structured, semistructured, and unstructured data, with the inherent ability to store data in its native
format and process any variety of it, ignoring size limits. A data lake provides a scalable and secure platform that
allows analysts to: ingest any data from any system at any speed—even if the data comes from on-premises,
cloud, or edge-computing systems; store any type or volume of data in full fidelity; process data in real time or
batch mode; and analyze data using a wide variety of programming languages as relevant tools. The SECURED
Knowledge Base will incorporate a Data Lake to act as its main data repository, thus exploiting its storage and
processing abilities for every aspect of the project.
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7.2.4.2 SECURED Data Inventory

In order to boost performance and avoid constant Data Lake parsing, the SECURED Knowledge Base will also
integrate a metadata-optimized database, the SECURED Data Inventory. This component is meant to keep
track of the datasets that have been registered in the SECURED Innohub and provide the authorized users
the means to reach them from the dataset respective repositories. While the Data Inventory is not providing
anonymized, privacy-preserving datasets, it provides the path in order to reach them.

7.2.4.3 Toolbox Repository

The Toolbox repository provides the storage location in the SECURED Federation Infrastructure where all the
SECURED tools are kept. The repository uses CI/CD pipelines in order to keep the tools that are provided by the
SECURED partners and allow the easy deployment of such tools in the SECURED Innohub users. The tools
that the repository hosts are originally described in the project’s Description of Actions (DoA) and can be further
grouped into the Secure Multi-Party Computation (SMPC) Engine that consists of the SMPC Hardware assisted
software library and the SMPC Transformation, the Data Anonymization Toolset that includes the Anonymization
tool, the Anonymization Assessment tool, the Dataset Bias quality Assessment tool and the Dataset Unbiasing
tool as well as tools that can be used for training and updating ML/DL and FL models in a privacy-preserving
manner (ML/DL and FL Modules). Note that the SMPC Engine includes a dedicated module for HE (the HE
module) with all the hardware assisted software libraries for performing Homomorphic Encryption.

7.2.5 Data Transformation Engine

The Data Transformation Engine operates as a Platform-as-a-Service within the SECURED Federated Infras-
tructure and utilizes the Data Anonymization Toolbox-as-a-service for the SECURED Innohub users. Such
users can register and upload an anonymized health dataset (using the Data Ingestion Mechanism and the
Knowledge Base components) and then deploy the Data Transformation Engine on it. Then the Engine is able
to perform bias Assessment and Anonymization Assessment and if bias and anonymization vulnerabilities are
discovered then perform an unbiasing and (re)Anonymization to remove them. The Data Transformation En-
gine, as expected, has an internal data storage where intermediate results of the above described process are
temporarely stored.

7.2.6 Synthetic Data Generator

The Synthetic Data Generator is the component that will be in charge of producing new data when required.
This component is data-driven, therefore it will require an external preparation, e.g. machine learning training.
Afterwards, the component will be available to use. This external preparation can be done outside the system
without requiring internal resources, but there is also the possibility of training it inside the SECURED Innohub
platform if the required components are in place, e.g. Federated Learning Framework and associated computing
resources. This component will be made of smaller components, one dedicated to each data type and modality.
Note that the Synthetic Data Generator can be used as a platform-as-a-service or can be downloaded as a tool
and executed locally at an end user’s premises.
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7.2.7 Anonymisation Decision Support

Given the broad variety of anonymization techniques and the fact that each one of the operates optimally on
specific types of data, the Anonymization Decision Support component offers guidelines on a given dataset re-
garding the anonymization approach that should be followed on this dataset. The Anonymization Decision Sup-
port is a platform-as-a-service (an application running inside the SECURED Federation Infrastructure) where a
registered SECURED Innohub user provides as an input information related to a specific dataset and the service
suggests the optimal techniques to be used for anonymizing the dataset and/or for performing anonymization
assessment. These techniques are, as expected, supported in the Data Anonymization Toolset and the Data
Tranformation Engine. The Anonymization Decision Support component can be offered also as a tool to be
downloaded and executed locally at an end user’s premises.

7.2.8 Legal Compliance Check

This component is offered as a service of the SECURED Innohub and is providing support on the legal aspects
related to a privacy sensitive dataset. Since there are different regulations in each EU member state as well
as the EU as a whole (e.g. the GDPR) on citizen’s data privacy, when a given dataset through the SECURED
solution is used across countries within EU, the users should be aware of all relevant privacy related regulations
(that may be different from country to country) that are applicable to such a dataset.

7.2.9 SECURED Innohub

The SECURED Innohub will act as the user entry-point to further exploit the SECURED Federation Infras-
tructure functionality. The specific module will allow access to authorized users only and will contain links for
downloading (i) the latest version of Data Anonymization Toolset, retrieved directly from the Toolbox Repository
(ii) the SMPC Engine modules, (iii) the HE module and (iv) ML/DL/FL modules. Upon downloading these soft-
ware bundles, users will be able to execute them on prem, following the detailed instructions delivered by the
developers of each module. In addition, the SECURED Innohub will act as the gateway for the SaaS solutions
of the SECURED Federation Infrastructure, such as the Synthetic Data Generator, the Anonymization Decision
Support and the legal/GDPR Compliance Check.

7.2.10 Auxiliary Modules

7.2.10.1 Codebase Repository

A codebase is any single repo (in a centralized revision control system like Subversion), or any set of repos
who share a root commit (in a decentralized revision control system like Git). One codebase may maps to
many deploys, but there is always a one-to-one correlation between the codebase and the app. The codebase
remains the same across all deploys, although different versions may be active in each deploy. For example,
a developer has some commits not yet deployed to staging; staging has some commits not yet deployed to
production. But they all share the same codebase, thus making them identifiable as different deploys of the
same app. Thus said, there is the necessity for a dedicated repository for the overall codebase of SECURED
Federation Infrastructure, mapped by the specific module.
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7.2.10.2 CI/CD Pipelines

A continuous integration/continuous delivery (CI/CD) pipeline is a framework that emphasizes iterative, reliable
code delivery processes for agile DevOps teams. It involves a workflow encompassing continuous integration,
testing, delivery, and continuous delivery/deployment practices. The pipeline arranges these methods into a
unified process for developing high-quality software. Test and build automation is key to a CI/CD pipeline,
which helps developers identify potential code flaws early in the software development lifecycle (SDLC). It is
then easier to push code changes to various environments and release the software to production. Automated
tests can assess crucial aspects ranging from application performance to security. In addition to testing and
quality control, automation is useful throughout the different phases of a CI/CD pipeline. It helps produce more
reliable software and enables faster, more secure releases.

7.2.10.3 Container Registry

Container images are standalone packages of software that can be used to quickly build and run containerized
applications and their dependencies. These software packages form the basis of any contemporary cloud-
native ecosystem. Used with container engines like Docker, container images transform the way that software
is developed and delivered. But without a way to organize and share container images, they won’t be nearly so
useful. A container registry is a place to store container images for use in application development—especially
cloud native development on microservices and containerized applications.

7.3 Preliminary Use-Case Descriptions with regards to the SECURED Archi-
tecture

While the main goal of this deliverable is not to capture and describe in detail the user requirements and use-
cases of the SECURED project, user requirements are a necessary part of the user journey/process mapping
mechanism that is adopted in the project in order to extract technical requirements. Thus, T4.1 has been
following closely the activities of T5.1 where user requirements have been collected and extracted so as to
utilize the collected input for the T4.1 activities and the D4.1 deliverable. However, since the full procedure and
actions of user requirement collection is part of the T5.1 activities, in D4.1 deliverable we don’t provide analytic
information on the T5.1 work but rather focus on results of the task that are relevant to T4.1 and D4.1 activities.
Given that T5.1 will deliver the final outcomes in M18, in D4.1 (that is delivered at M6) we can only consider
preliminary user requirements to extract technical requirements of the SECURED solution. However, the work
done up until M6 and the collected inputs from the SECURED pilots/use-case providers is deemed sufficient to
extract realistic technical requirements of the SECURED solution. Eventually, when the final user requirements
are provided, T4.1 in close collaboration with T5.1 will be able to revise any technical requirements that become
obsolete by M18 in the D4.2 deliverable.

The interaction with the use-case provider/pilot partners consisted of several offline email exchange and a se-
ries of bilateral online teleconferences (one per use case partner/pilot) where we applied the first stages of
the user journey approach and identified involved users per pilot, basic processes that the pilots want to be
implemented and eventually the end goals of each use-case. The consolidated input from the bilateral tele-
conferences were processed and were used as a starting point for the first end user SECURED workshop, a
physical meeting that took place on the 13th of June in Barcelona (hosted by the partner BSC and led by the
T5.1 task leader EMC). The second phase of user requirement collection, the association with the SECURED
preliminary Architecture and the alignment of the architecture to the involved use-case providers/pilot was ex-
tracted from the discussions made in the 1st end user SECURED workshop. In the following subsections we
provide the extracted outcomes of the above activities from the viewpoint of T4.1, i.e. from the SECURED ar-
chitecture and SECURED technical requirements perspective. More specifically, in subsubsection 7.3.1, Core
user requirements that can be applied to all use-cases (including consortium use-case providers/pilots and any
external open-call participants) are briefly provided. Beyond the above requirements, in subsubsection 7.3.2
the extracted outcomes of the 1st end user SECURED workshop regarding each use-case partner are provided
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and more specific use-case specifications/requirements are described. In this subsubsection we also provide
information on the components of the preliminary SECURED architecture that each use-case is expected to
use.

7.3.1 Core user requirements

User requirements are defined by the end-users of a platform, framework or component and express how the
specific element is expected to perform, strictly from the user’s perspective. It is rather obvious that user require-
ments provide information that can be treated as the baseline for further specification, design and verification of
any attribute of the corresponding element. During the design phase of the SECURED Architecture, an attempt
to identify core user needs was carried out, through a dedicated workshop where user feedback was collected.
Initially, we divided the overall framework we were trying to design into distinct components, for which the users
were directly interviewed. These distinct components provide a bird’s-eye view of the system and are presented
in the following paragraphs.

7.3.1.1 Login Requirements

When users try to interact with a service or a platform, their first action is to establish connection and issues
requests toward the Login module, namely the software component responsible for user authentication. Its
main purpose is to ensure that only users with access rights will be able to join the platform and interact with the
available content. The login module typically presents a login screen or interface where users are prompted to
enter their username and password. Then the module validates the provided credentials against a pre-defined
database of authorized users and grants or denies access based on the result of this authentication process.
Since login modules are commonly used in applications, operating systems and software where access control
is required, users are accustomed with their role and have a really clear idea of how such modules must behave,
together with their essential functionality, all listed in Table 25.

Code name Description
CUR_1 Must provide a single login page for all roles
CUR_2 Must allow new users to register in the platform and automatically grant access based on

their respective roles
CUR_3 The platform should provide a new user initiation mechanism which must also support invi-

tation by existing users. New, registered users may have access only to public materials
CUR_4 A platform user should be able to change his/her password
CUR_5 The platform should provide “forgot password” functionality
CUR_6 The service should provide federated authentication
CUR_7 The service should provide role-based access
CUR_8 The service should handle SECURED-specific roles. The service should provide overview

of users based on their login name, access rights, roles and last access date. Any roles or
role groups should be able to assigned to or revoked from a user

CUR_9 In general, users should only need to verify their identity during the initial process
Table 25 – Login Requirements
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7.3.1.2 Data-Transfer Requirements

Data transfer refers to the collection, replication, and transmission of data from a specific organization, platform,
framework or software component to another. Between larger systems and organizations, the term "data trans-
fer" is directly linked with the concept of secure enterprise data sharing between business partners. Because
the data is moving beyond the enterprise perimeter, care must be taken to secure the data. The major user
requirements regarding data transfer, as defined under the auspices of the SECURED framework are listed
Table 26.

Code name Description
CUR_10 All communication channels must be encrypted / secure
CUR_11 User must be able to instantly drop communication channel if it is considered compromised
CUR_12 A registered user must be able to load privately-owned data to the system and should be

able to define access policy/rights to the data, without any additional authentication
Table 26 – Data Transfer Requirements

7.3.1.3 Data-Storage Requirements

Data storage can be defined as the recording of information in a convenient medium, which allows its retrieval,
reproduction and availability. In the digital age, the term refers to the use of recording media to retain data using
computers or other devices, with the most prevalent forms of data storage being file storage, block storage and
object storage, each suitable for different purposes. The SECURED framework will incorporate a series of such
solutions to ensure sensitive information handling, between all participating entities. As such, there are certain
expectations by users regarding the overall SECURED infrastructure storage modules, and they are presented
in Table 27.

Code name Description
CUR_13 The SECURED framework must support the storage of Unbiased, Anonymous, Synthetic

Data in a large scale
CUR_14 The SECURED framework must have a dedicated module for storing Unbiased, Anony-

mous, AI Models
CUR_15 A comprehensive inventory of Health Data sources (Knowledge Graph and Data catalogue)

must be available as part of the SECURED framework.
CUR_16 Authorized Users must be allowed to parse/download Datasets / AI Models, following the

Legal limitations of their region/country as well as the relevant legislation (some registered
Geolocation information must be also available).

CUR_17 The SECURED framework may store/retrieve information regarding User roles.
CUR_18 The SECURED framework must support Hybrid data integration from various sources.
CUR_19 The SECURED framework must provide mechanisms for granular dataset access control
CUR_20 The SECURED framework must support/accommodate data access requests from regis-

tered users
Table 27 – Data Storage Requirements
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7.3.1.4 User-Interface (UI) Requirements

A user interface can be defined as the space where interactions between humans and machines occur. The
goal of this interaction is to allow effective operation and control of the machine from the human end, while the
machine simultaneously feeds back information that aids the operators’ decision-making process. Generally,
the goal of user interface design is to produce a user interface that makes it easy, enjoyable and efficient to
operate a machine in the way which produces the best possible results. This generally means that the operator
needs to provide minimal input to achieve the desired output, and also that the machine minimizes undesired
outputs to the user. Modern-day users are familiar with user interfaces and compared to previous generations
of users, their expectations are significantly raised. The obtained feedback indicated that for the design of the
user interface of the SECURED Platform, the requirements listed in Table 28 should be taken into consideration:

Code name Description
CUR_21 The Content must be displayed and presented properly
CUR_22 The UI must be really easy to Navigate
CUR_23 The interface must be simple but not simplistic. Information must be presented without

omitting critical elements or being out of context
CUR_24 The UI must be responsive
CUR_25 The platform must include a mechanism for users to provide necessary feedback
CUR_26 The UI must have a purposeful layout, allowing user guidance to obtain the necessary in-

formation
CUR_27 The UI must have a strategical usage of colour and texture
CUR_28 The UI must provide relevant and up-to-date help information
CUR_29 The UI must follow a User-centric approach

Table 28 – User Interface

7.3.1.5 Overall SECURED Platform Requirements

System requirements is a statement that identifies the functionality that is needed by a system in order to sat-
isfy the customer’s requirements. Failure to meet system requirements may result in installation, performance
and most definitely customer experience issues. The former may prevent a device or application from getting
installed, whereas the latter may cause a product to malfunction or perform below expectation or even to hang
or crash. As for the third category, it is of paramount importance since it may compromise user satisfaction,
and consequently lead to a smaller customer base for a product, platform or service. Under the auspices of
SECURED Project, users provided a detailed list of expectations when it comes to the core platform’s function-
ality, the features it needs to support as well as the performance standards it needs to maintain in an end-to-end
manner. The requirements that need to be developed are evaluated and presented in Table 29.
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Code name Description
CUR_30 It must be able to query the Data Storage block for gathering information (Dataset informa-

tion obtained through API calls)
CUR_31 It should be able to query the Analytics block (APIs) for gathering analytics/measurements
CUR_32 It must be able to retrieve Geolocation Information by accessing User Registry (Active Di-

rectory) or whichever repository the User Data/Info is stored
CUR_33 It must generate recommendations at the occurrence of datasets that could be in-

cluded/downloaded/used based on the geolocation/use case of the specific user
CUR_34 It must log events that are considered relevant to end-user application’s purposes (i.e. report

generation, legal regulations which led to a specific suggestion)
CUR_35 It must push notifications in case policies/regulations/legislation changes to users that may

have already downloaded datasets which no longer should utilize
CUR_36 It must expose and API for accessing events
CUR_37 It should allow the specification of customized rules for the attributes it monitors, and corre-

lates user needs/requirements, while in the same time preserves legal compliance
CUR_38 It should allow to define a logical group of rules for simplified management and visualization

purposes
CUR_39 It should send notification via email
Core_40 It should assist the end user in creating new rule instances by offering an appropriate API,

providing a tentative rule instance filled in with default values (e.g. threshold values) as well
as parameter values customized based on the user query.

Table 29 – Platform Requirements

7.3.2 Use-Case adaptations of the SECURED preliminary Architecture

7.3.2.1 Use-Case 1: Real-Time tumor classification

Use-case 1 is focused on the privacy-preserving processing of health data needed at the surgery operating
room performed in a untrusted (from a privacy perspective) High Performance Computing (HPC) site. More
specifically, during surgery functional Ultra-Sound (fUS) data collected live from a patient undergoing brain
surgery for tumor extraction need to be combined (and processed) with MRI data that have been collected by
the hospital radiology department on a previous day. Due to the complexity of the computation, the volume
of involved data and the need for fast results implies that the processing of the involved data cannot be done
within the operating room but it is performed offsite in the EMC HPC Cluster (denoted as CUBE). Note that the
computation result is expected in less that 5 min from the provided input in order to be useful/accurate for the
doctor/surgeon during surgery. Furthermore, since the MRI data is collected by another hospital department
(the radiology department), due to privacy policies, they are not to be shared outside the department apart from
being just visualized for the involved doctors. So, while the operating room and the CUBE HPC cluster belong
to the same department and they can exchange data (i.e. fUS data in the use-case 1), MRI data cannot be
shared and thus processed by the CUBE HPC cluster. The above described overall use-case as well as the
addition that can be introduced using the SECURED solution are presented in Figure 11.
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Figure 11 – An overview of Use-Case 1 and its interaction with the SECURED solution

Initially, the patient visits the radiology department of the hospital and gets necessary MRI scans a few days
before the surgery. These patient data are stored in a local database and are processed using AI techniques in
order to extract valuable features for the actual surgery (as well as to reduce the size of the MRI data to be used).
Then, using the SECURED SMPC Engine and more specifically the HE module the MRI data (and metadata) are
encrypted using HE in order to be send for processing in the CUBE HPC cluster. The above process is not time
critical and does not have near real time constrains. During surgery, the operating room has conceptually two
types of equipment involved in the use-case 1: the fUS data collection and processing equipment and the Health
data visualization equipment. For both types of equipment their main user is the doctors/surgeons performing
the surgery at the Operating Room. The fUS data collection and processing equipment is used in order to
collect fUS data during surgery and are preprocessed to extract tracking information and also provide support
for image beamforming [605]. The preprocessing outcomes are then stored locally and are forwarded through
a secure channel to the CUBE HPC cluster for further processing in combination with the homomorphically
encrypted MRI data. The outcome of this HE processing is then forwarded to the Visualization Equipment
of the Operating Room where they are HE decrypted and visualized in monitors inside the Operating Room.
The above discussed Operating Room processes are time-critical and require near-real time response (the
computation results should be available in less the 5 minutes from taking the fUS measurements).

The above use-case 1 analysis as expected, involves several components of the SECURED architecture. Those
components are presented in Figure 12 where we highlight in green dashed boxes the utilized SECURED
architecture components. SECURED components that are not needed in use-case 1 are grayed out in the
figure.
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Figure 12 – SECURED component (in dashed green) utilized by Use-Case 1

7.3.2.2 Use-Case 2: Telemonitoring for children

Use-case 2 is focused on detecting anomalous characteristics of health timeseries data collected through vari-
ous health monitoring sensors using ML/DL. The anomaly detection can be performed within a hospital premises
but also at a child patient’s house where its health is monitored after leaving the hospital. To realize the use-
case we can assume that there is a training phase to create the proper ML/DL model and an inference phase
where the created ML/DL model is used to detect anomalies. As depicted in Figure 13, viewing the use-case
from one hospital perspective (denoted as Hospital A), we assume that this hospital requires the assistance of
other hospitals to train ML/DL models. That is, Hospital A aims to utilize data from other hospitals (eg. Hospital
B and Hospital C) in order for all of them to collectively train ML/DL models that eventually all of them will use
internally. From a technology perspective this constitutes a typical SMPC scenario. Given the above specifics,
in use-case 2 we can also consider that some of the hospitals wants to enhance their health data pool by in-
cluding synthetically generated data apart from the real health data. In Figure 13, a multiple hospital ML/DL
assisted patient tele-monitoring system is presented. Each hospital has installed proper sensors on patients to
collect a broad range of timeseries health data including ECG, heart rate, oxygen saturation, respiratory rate
etc. The collected data are stored locally at each hospital premises and are viewed in a hospital client applica-
tion (in Figure 13 the client application of Hospital A is visible only). The data are not directly associated with
the patient (i.e they are anonymized) but only with the patient ID and the bed number. Apart from making the
data visible to a doctor or nurse (users of client application) the hospital wishes to make available to its users
the capability to identify early on anomalies that may be associated with possible patient health issues. Thus
ML/DL for anomaly detection is needed in the hospital client application for inference of such anomalies. To
train however such ML/DL models, the hospital needs high data volumes and requires the assistance of other
hospitals. ML/DL model training needs to be made using entities (various hospital health data hubs) that are
not legally allowed to share health data. To achieve this, each hospital could download and use as a tool (on
premise) the SECURED data Anonymization toolset in order to evaluate the anonymity and bias of their dataset
and then setup the SECURED Secure Multiparty Computation Engine in order to collaboratively compute/train
a common ML/DL model. The process will be repeated for all involved hospitals and eventually all the hospitals
will use the SECURED SMPC to train ML/DL models using their own training dataset as well as the training
datasets (while maintaining privacy using SMPC/HE) from all other the hospitals. The end outcome will be a
common, for all hospitals, ML/DL trained model that is going to be registered to the SECURED Innohub and be
used for inference by the client application of each hospital.
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Figure 13 – An overview of Use-Case 2 and its interaction with the SECURED solution

This use-case can be further extended by adopting more advanced feature of the SECURED solution like
privacy-preserving Federated Learning for continuous training/update of the ML/DL models. In such a scenario,
that still closely resembles the one in Figure 13, one of the hospitals can act as a FL server while the other
hospitals can act as clients. In such a variation, the SMPC engine is used in combination with the SECURED
FL modules to implement the ML/DL training and update.

In addition to the above, the Figure 13 use-case includes anomaly detection based inference for home-care
telemonitoring. In such a scenario, we assume that a child is monitored at his/her home though various installed
medical sensors and medical data are collected to an aggregation point at the home premises. The data are
then fed into a Home Care Client Application that identifies anomalies and visualizes the data and ML/DL
results. To achieve that, the Home Care client application registers to the SECURED Innohub and downloads
the already trained ML/DL anomaly detection models (by the various hospitals scenario of use-case 2 discussed
in the previous paragraphs) that are already included in the SECURED Innohub.

The above use-case 2 analysis as expected, involves several components of the SECURED architecture. Those
components are presented in Figure 14 where we highlight in green dashed boxes the utilized SECURED
architecture components. SECURED components that are not needed in use-case 2 are grayed out in the
figure.
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Figure 14 – SECURED component (in dashed green) utilized by Use-Case 2

7.3.2.3 Use-Case 3: Synthetic-data generation for education

Use-case 3 is highly focused on the synthetic health data generation for educational purposes. The use-case
considers three different modalities of health data:

• imaging modality with 2D/3D mammography images, MRI scans, ultrasound scans, colon, liver, lung
Whole Slide Image (WSI) etc.;

• timeseries modality with heart rate, ECG, CTG timeseries;

• EHR modality with text related and tabular data.

The synthetic data generation process should consider data from the use-case partner private Health Data Lake
as well as health data from third party open access data lakes. The synthetic data generation process should
make sure that the data that are used as input to this process are properly anonymized and are unbiased.
Similarly, the synthetically generated data should also be anonymous and unbiased. The currently identified
involved users in the use-case are the administrators of the system, the educators, the evaluators (usually
doctors) that assess the quality of the synthetic data and the students.

The use-case can use the SECURED solution in two different ways. The first way the use-case provider employs
the SECURED Innohub relevant services as presented in Figure 15. Thus, in this approach the synthetic data
generation takes place off-premise and is provided as a service to the use-case provider. However, the data
to be transferred to the SECURED Innohub in order to be fed to the synthetic data generation service, should
be properly anonymized on-premise (they cannot leave their private data lake otherwise). Thus, the proper
usage of the SECURED solution in the above described approach, as depicted in Figure 15, is the following.
Firstly, the use-case provider (the admin user) is downloading on-premise, the Data Anonymization toolset
which operates as a Data Transformation Engine but offline, on use-case provider premises. This toolbox will
locally assess the privacy status (bias, resistance to de-anonymization) of the private, in-house data sets (for
all the expected modalities) and perform re-anonymization if needed as well as bias assessment/un-biasing.
Eventually, when the process has been successfully completed (the datasets are properly anonymized (i.e low
risk of anoynmization vulnerabilities discovered through the SECURED anonymization assessment) and are
unbiased), the online phase will initiate. In this phase, the anonymized data are uploaded to the SECURED
Innohub (eventually they are also made available for the relevant research community with appropriate access
rights, determined by the legal documents as described in D1.2) along with any relevant open access data
set. The provided inputs are ingested by the synthetic data generator that performs synthetic data generation
and privacy assessment. The latter, provides the same functionality as the Data Anonymization toolset (i.e
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anonymization and bias assessment and re-anonymization if needed). Finally, the anonymized results are
registered in the SECURED Knowledge Base and are provided to the use-case provider.

Figure 15 – An overview of Use-Case 3 when off-premise computation is involved and its interaction with the SECURED solution

The second way that SECURED solution can be employed in use-case 3 is by downloading on the use-case
provider premises all the necessary tools from the SECURED Innohub in order to perform synthetic data gen-
eration locally, as depicted in Figure 16. Initially, the use-case provider (the admin user) downloads and installs
on-premise the Data Anonymization toolset in order to anonymize, assess the anonymization and bias of the
dataset and potentially re-anonymize them after the synthetic data generation. Similarly, the use-case provider
downloads and installs the synthetic data generator engine as a tool. Eventually, the local health data are fed
into the locally deployed synthetic data generation engine along with external open access datasets and the
synthetically generated data are stored locally on the use-case provider premises after passing through the
Data Anonymization toolset to evaluate and enhance (if needed) their anonymity or remove any existing bias.
The SECURED Innohub Knowledge base must be updated in order to register the synthetically generated data.

Figure 16 – An overview of Use-Case 3 where all computations are performed on-premise and its interaction with the SECURED solution

Based on the above analysis of the use-case and the use-case interactions with the SECURED solution, in
Figure 17 we highlight in green dashed boxes the SECURED architecture components that are needed for
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use-case 3. SECURED components that are not needed in use-case 3 are grayed out in the figure.

Figure 17 – SECURED component (in dashed green) utilized by Use-Case 3

7.3.2.4 Use-Case 4:Access to genomic data

Use-case 4 is focused on the privacy enabled processing of genomic data with the EHR of a patient. Practically,
as depicted in Figure 18, the use-case assumes that the hospital has securely stored genomic data for a large
pool of people and that the same or another hospital has stored the EHR of some of the people in the genomic
data lake. The use-case assumes that a doctor using some client application (on a local Personal Computer or
a mobile phone) is able to access and update a patient’s EHR (that exists in the EHR data lake) and eventually
identify the polygenic risk of this patient for various types of cancer. Eventually, there are two factors that need to
be evaluated to extract the correct polygenic risk, that is the genetic risk (the baseline risk) and the environmental
impact to this baseline risk as this is captured by a patient’s recorded health data (in the EHR). The processing of
the two data flows is performed by the Onco AI solution that extracts the baseline genetic risk from the genomic
data and using an AI-based mechanism combines this information with a patient’s EHR to provide the adapted,
updated cancer risk of ovarian cancer considering the patient’s environmental characteristics. This processing
(i.e. Onco AI) by combining data from two different sources that don’t want to fully disclose data introduces the
need for privacy-preserving processing and thus it involves the realization of some SMPC or HE scheme. Note
that processing is performed off hospital premise and thus the data (genome and EHR have to be provided in
privacy-preserving manner. Eventually, the outcome of the processing need to reach the client application of
the patient’s doctor where they will be visualized in order for the doctor to be able to explain the results to the
patient in order to together decide the best course of action to battle cancer.
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Figure 18 – An overview of Use-Case 4 and its interaction with the SECURED solution

In Figure 18, a preliminary SECURED solution enhanced adaptation of the use-case is provided. The involved
data of the use-case, i.e. the genome data and the EHR data are encrypted using the SECURED SMPC engine
that include the necessary HE modules to handle the data encryption at the source (in each hospital or data
lake). The data leave their respective data lakes after been encrypted with HE and reach their processing point
without leaking any confidential/private information. At the processing point, using again the SECURED SMPC
engine (and the HE module) the data are encrypted in two phases. In phase 1, the extraction of the genetic
risk is made only from the encrypted genomic data. In phase 2 the SMPC/HE-enabled onco AI tool is used
in order to align the encrypted genetic risk into the environmentally enabled risk for cancer. All data inputs,
intermediate values and outputs are encrypted during the overall risk extraction process. Since the onco AI is
using ML or DL models, such trained and FHE enabled models can be provided from the SECURED Innohub
and the offered SECURED knowledge base. Eventually, the final outcome is transmitted to the doctor client
application, it is decrypted using the SECURED SMPC engine (the FHE module) and is visualized by the doctor.
Additionally, the doctor may decide that some of the provided, decrypted results should be made available to the
research community as long as they are properly anonymized. This process can be done using the SECURED
Data transformation engine or the relevant toolset which consists of an annonymization mechanism, a bias
assessment mechanism and the anonymization assessment mechanism. Eventually, failure to comply with
the anonymization assessment criteria will initiate a new anonymization round with different configuration that
eventually after anonymization assessment will provide the necessary anonymity status that is required by the
use-case provider. In Figure 19 we highlight in green dashed boxes the SECURED architecture components
that are needed for Use-case 4 based on the above provided description. SECURED components that are not
needed in use-case 4 are grayed out in the figure.
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Figure 19 – SECURED component (in dashed green) utilized by Use-Case 4

7.4 Technical requirements of Preliminary SECURED Architecture components

This section outlines the technical requirements extracted from the preliminary activities of T4.1, the user journey
and process mapping that has been performed following the guidelines of subsubsection 7.1.2.2, the interaction
with the use-case providers and their respective use-case as this is described in subsection 7.3.2. Furthermore,
we have taken into consideration the analysis in Sections 3 to 6 of this State-of-the-Art document and the
SoTA Gaps that have been documented there. The above have been viewed under the SECURED project
objectives as those have been presented in the DoA as well as the identified preliminary SECURED architecture
components (and the Architecture as a whole) presented at Figure 10. Apart from the above, we have also taken
into consideration the dominant integration technologies on the market that can help us provide an integrated
SECURED solution (also depicted in the preliminary SECURED Architecture) and have included them in the
technical requirement specifications.
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Figure 20 – The SECURED Technical Requirements Documentation Approach

The overall approach that has been followed is illustrated in Figure 20. Using the described approach in the
Figure, we aim to ensure that all technical requirements of the project are well-defined and aligned with the
needs of the stakeholders and end users, while also being feasible and achievable given the current state
of the technology and State of the Art research. The Technical requirements are presented in the following
subsections per Preliminary Architecture component or group of components as those are presented in Figure
10 and are described in subsection 7.2. Each Technical Requirement is encoded using the legend of the
following Table (Table 30).

Template Field Description

ID
A unique ID, in the form REQ-TASK-CATEGORY-PRIORITY-#
Example: “REQ-PLAT-SEC-M-001”

Task

TASK = DATA|DPROC|AIxL|PLAT|LEG|SHW|DEV|PI
DATA : Data Handling / Synthetic Data Generation / (De)Anonymization
DPROC: SMPC / HE
AI-xL : Artificial Intelligence / Federated Learning
PLAT: Platform/Deployment / Architecture Requirements
LEG : Legal Compliance / Trust guarantees and risk analysis
SHW : Specialized Hardware Requirement
DEV: Specialized System & Software Development
PI: Physical Infrastructure (COTS)

Requirement Type
ReqType = FUNC|NFUNC
Define if this is a Functional or Non-Functional Requirement
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Category

TYPE = AVL|USE|REL|SEC|PERF|COMP|MAINT | PORT | PRIV
AVL: Availability
USE: Usability
REL: Reliability
SEC: Security
PERF: Performance/Efficiency
COMP: Compatibility
MAINT: Maintainability
PORT: Portability
PRIV: Privacy

Priority (MoSCoW
equivalent)

This allow to identify the priority of the requirements.
It can be updated in the future iterations of the Requirements:
M: Must-have. Mandatory requirement.
S: Should-have. Desirable requirement.
O: Could-have. Optional requirement.
P: Will-not-have. Possible future enhancement

Short Title A meaningful and not too long title that characterizes the requirement.
Description General description, a brief text explaining the requirement, including the objec-

tives where necessary.
Associated Core
User Requirement
(CUR)

Enumerate the associated Core user requirements that have been presented in
subsection 7.3.1

Table 30 – Technical Requirements Encoding Legend

7.4.1 Technical Requirements for Platform Deployment, underlying Infrastructure and mod-
ule Positioning

REQ-PLAT-PORT-M-01 Short Name: Integration of experimenter’s complimentary components

Description The platform should support the integration of virtual or physical infrastructure compo-
nent brought by the experimenters during the open call, which will allow them to conduct
the relevant experimentation and validate KPI related objectives. This may be permitted
under certain conditions and safety regulations and is strongly dependent on the actual
functionality provided by the component. Components which may compromise the SE-
CURED Hub security cannot be allowed to be deployed.

Priority Mandatory Type Functional CUR 30 - 40

REQ-PLAT-USE-D-02 Short Name: Application/Service deployment at the Edge

Description When required by Application/Service, Edge Infrastructure should be available for de-
ployment (Edge can be on premise, on local/private cloud environments or potentially
public cloud). Edge Infrastructure should support deployment of containerized Applica-
tion/Services (i.e. Docker containers) using industry standard tools such as Terraform.

Priority Desirable Type Functional CUR 13 - 15
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REQ-PLAT-USE-M-03 Short Name: Application/Service deployment infrastructure support

Description Compute infrastructure used for Deployment must provide APIs and Tools to Deploy and
orchestrate function virtualisation via virtual machines or containers and virtual network-
ing

Priority Mandatory Type Functional CUR 13 - 15

REQ-PLAT-REL-M-04 Short Name: Application/Service Private deployment support

Description Downloaded Application/Service binaries/artifacts, should be able to be easily instan-
tiated in Private Cloud Environments (K8s clusters) using standardized (K8s) soft-
ware/tools

Priority Mandatory Type Functional CUR 13 - 15, 30, 31

REQ-PLAT-REL-M-05 Short Name: Application/Service Public deployment support

Description Downloaded Application/Service binaries/artifacts, should be able to be easily instanti-
ated in Public Cloud Environments (K8s clusters) using standardized (K8s) software/tools

Priority Mandatory Type Functional CUR 13 - 15, 30, 31

REQ-PLAT-AVL-D-06 Short Name: Cloud native elasticity (scale out/scale in) support

Description Application/Service should incorporate standardized scale up/out procedures in contain-
ers/VMs in order to support high volumes of traffic and number of users.

Priority Desirable Type Non-Functional CUR 13 - 15, 30, 31, 37

REQ-PLAT-SEC-M-07 Short Name: Security, integrity and reliability of communication links between Appli-
cation/Service and interconnected entities

Description All connectivity links between the Application/Service and the inteconnected architectural
components should be secure. The communication link between the Application/Service
and the control plane APIs should be protected in terms of confidentiality and integrity.

Priority Mandatory Type Non-Functional CUR 13 - 15, 30, 31,
36, 37

REQ-PLAT-PRIV-M-08 Short Name: End to end encrypted communication

Description Communications through the network should be secured, with end-to-end encryption
Priority Mandatory Type Functional CUR 10 - 12

REQ-PLAT-PRIV-M-09 Short Name: Granular User Access support

Description The Application/Service should support various levels of authorization (remote user /
centralized user / administrator etc.

Priority Mandatory Type Functional CUR 6 - 9

REQ-PLAT-SEC-M-10 Short Name: Strong User Authentication support

Description The infrastructure should support mutual strong authentication between exposed APIs
and Application/Service (as well as with the corresponding vertical applications).

Priority Mandatory Type Functional CUR 6 - 9, 17
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7.4.2 Technical Requirements for delivering contemporary services related with User Au-
thentication & Authorization

REQ-PLAT-SEC-D-11 Short Name: Single-Sign On / Out

Description Users Authenticate with the Authentication and Authorization entity rather than individual
applications. This means that the infrastructure only has a single entity to deal with login
forms, authenticating and storing users. Once logged-in to AA entity, users don’t have to
login again to access a different application or service inside the SECURED ecosystem.
In addition, the AA entity should provide single-sign out, meaning that users only have to
logout once to be logged-out of all applications and services.

Priority Desirable Type Functional CUR 6 - 9, 17

REQ-PLAT-SEC-M-12 Short Name: User Federation Support

Description The Authentication & Authorization entity must support interconnection to existing LDAP
or Active Directory servers. It should also be possible to implement additional providers
to integrate users found in other repositories i.e. a relational database

Priority Mandatory Type Functional CUR 6 - 9, 16, 17

REQ-PLAT-SEC-M-13 Short Name: Standard Protocol and Identity Brokering Support

Description The Authentication & Authorization entity must be based on standard protocols and pro-
vides support for OpenID Connect, OAuth 2.0, and SAML. This will allow user Authenti-
cation with existing OpenID Connect or SAML 2.0 Identity Providers. Ideally, the identity
brokering should be configurable through the administration console.

Priority Mandatory Type Functional CUR 6 - 12, 16, 17

REQ-PLAT-SEC-D-14 Short Name: Administration Console

Description Every configuration action of the Authentication & Authorization entity must be made
through the admin console. Administrators must be able to centrally (i) enable and dis-
able various features, (ii) configure identity brokering and user federation, (iii) create and
manage applications and services (iv) define fine-grained authorization policies and (v)
manage users, including permissions and sessions.

Priority Desirable Type Functional CUR 1 - 9, 13 - 18

REQ-PLAT-SEC-M-15 Short Name: RBAC Authorization Service and Customized Policy Support

Description The Authentication & Authorization entity must support Role-based access control
(RBAC), in order to restrict network access based on the roles of individual users within
the SECURED Infrastructure. To further enhance security the Authentication & Autho-
rization entity must also support fine-grained authorization services, allowing permission
management for all services through a central point thus empowering the administrators
to define accurately who is allowed to access the various entities through well-defined
policies.

Priority Mandatory Type Non-Functional CUR 7, 13 - 18
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REQ-PLAT-SEC-P-16 Short Name: Account Management Console / Environment (OPTIONAL)

Description The Authentication & Authorization entity must provide an account management console
accessible by users for managing their own accounts. Users should be able to update
the profile, change passwords, manage sessions and last but not least view the account
history. If you’ve enabled social login or identity brokering users can also link their ac-
counts with additional providers to allow them to authenticate to the same account with
different identity providers.

Priority Possible Type Non-Functional CUR 1 - 9

REQ-PLAT-SEC-P-17 Short Name: 2(M)Factor Authentication Support (OPTIONAL)

Description The Authentication & Authorization entity could support two(multi)-factor authentication
to increase security. 2(M)FA should be configurable by the users from the Account Man-
agement Console.

Priority Possible Type Functional CUR 1 - 3, 9

7.4.3 Vault and Secrets Management

REQ-PLAT-SEC-M-18 Short Name: Secrets Management

Description The Vault must be able to Securely store and tightly control access to tokens, passwords,
certificates, API keys, and other secrets. In addition, the Vault must also support K8s-
related secret management (i.e KV Secrets Engine, Database Credentials, Kubernetes
Secrets)

Priority Mandatory Type Functional CUR 10, 12, 13 - 18,
30, 32

REQ-PLAT-SEC-M-19 Short Name: Key Management

Description The Vault must support the creation and control of the encryption keys used for all types
of data encryption (data at rest/in transit).

Priority Mandatory Type Functional CUR 10, 30, 32

REQ-PLAT-SEC-M-20 Short Name: Certificate Management

Description The Vault must support the provisioning, management, and deployment of public and pri-
vate Transport Layer Security/Secure Sockets Layer (TLS/SSL) certificates which could
be used to secure external/internal connected resources.

Priority Mandatory Type Functional CUR 10, 30, 32
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7.4.4 Technical Requirements for delivering a Centralized Logging Repository

REQ-PLAT-COMP-M-21 Short Name: Source-agnostic data ingestion

Description The Centralized Logging Repository must have the ability to ingest and securely store
data from various resources. Data storage should be isolated from the ingestion mech-
anism to avoid data loss.

Priority Mandatory Type Functional CUR 30 - 34

REQ-PLAT-MAINT-M-22 Short Name: Metrics Handling support

Description Metrics are numerical values that are collected at regular intervals and describe some
aspect of the system at a particular time. The Centralized Logging Repository must sup-
port Metrics handling. The entity needs to be able to collect numeric data from monitored
resources into a time-series database.

Priority Mandatory Type Functional CUR 34

REQ-PLAT-MAINT-D-23 Short Name: Log Ingestion support

Description The Centralized Logging Repository must support Log ingestion, as well as being able
to organize log/performance data from monitored resources. For properly do so, it must
support a variety of data types that have their own structure.

Priority Desirable Type Functional CUR 34

REQ-PLAT-MAINT-D-24 Short Name: Custom Query Support

Description The Centralized Logging Repository must support log queries for analyzing ingested logs.
Ideally, an API must be exposed giving the ability to other modules/entities to execute
queries on stored logs/metrics.

Priority Desirable Type Functional CUR 34

REQ-PLAT-MAINT-D-25 Short Name: Traces Handling support

Description The Centralized Logging Repository must support Traces ingestion. A trace represents
the end-to-end journey of a request through a distributed system. By viewing a trace,
known as distributed tracing, it is possible to track a complete execution path and iden-
tify which part of the code is causing issues like errors, latency concerns or resource
availability, all elements of paramount importance for a distributed architecture.

Priority Desirable Type Functional CUR 34
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7.4.5 Technical Requirements for implementing a Monitoring / Alerting mechanism

REQ-PLAT-MAINT-M-26 Short Name: Centralized Logging Repository query environment / interface

Description Must provide an environment to edit and run log queries against data stored in the Cen-
tralized Logging Repository

Priority Mandatory Type Functional CUR 37, 39

REQ-PLAT-MAINT-M-27 Short Name: Metric Alerts support

Description Metric alerts evaluate resource metrics at regular intervals. Metrics can be platform met-
rics, custom metrics, or logs converted to metrics via a customized process (i.e. times-
tamps). Metric alerts should also be triggered via multiple conditions as well as through
dynamic thresholds.

Priority Mandatory Type Functional CUR 37, 39

REQ-PLAT-MAINT-D-28 Short Name: Activity Log Alert support

Description Activity log alerts are triggered when a new activity log event occurs that matches defined
conditions. Resource Health alerts and Service Health alerts are considered activity log
alerts that report on your service and resource health.

Priority Desirable Type Functional CUR 37, 39

REQ-PLAT-MAINT-D-29 Short Name: Customized Alert Rules support

Description The Monitoring / Alerting Mechanism should support customized alert rules, which moni-
tor stored data and identify signals that indicates anomaly on the specified resource. For
instance, an alert rule that captures a signal may check if the signal meets the criteria
of the condition. If the conditions are met, an alert is triggered, leading to an associated
action together with an update of the state of the alert.

Priority Desirable Type Functional CUR 35, 37, 39, 40

7.4.6 Visualization Entity Technical Requirements

REQ-PLAT-MAINT-M-30 Short Name: Dashboards and Tables

Description Visual representation of data through filtered tables and dashboards
Priority Mandatory Type Functional CUR 21 - 29

REQ-PLAT-MAINT-M-31 Short Name: Log Reports

Description Predefined reports for visualizing logs per application type
Priority Mandatory Type Functional CUR 21 - 29, 35, 37

REQ-PLAT-MAINT-M-32 Short Name: Analytics Graphs

Description Responsible for providing on-demand general statistics related to predefined attributes
in a given time interval
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Priority Mandatory Type Functional CUR 21 - 29

7.4.7 Technical Requirements for the DATA Transformation Engine

REQ-PLAT-PERF-M-33 Short Name: Accelerated Data Retrieval Mechanism

Description The Data Transformation Engine must incorporate a mechanism for loading data from
Datalakes faster, similar to MS Polybase

Priority Mandatory Type Functional CUR 13 - 18

REQ-PLAT-DATA-O-34 Short Name: Common Data Integration Pattern Functionality (ETL/ELT)

Description The Data Transformation Engine must be able to align with data functionality following
both the ELT as well as the ETL operational mode, namely executing (i) Extraction by
connecting to sources, copy data to central store, (ii) Transformation, by process the
data for analysis / data transformation at scale and (iii) Loading by moving the data to
data lake/warehouse or analytics engines for business insights. On the ELT pattern, raw
(native) data is itself loaded (stored) before the transformation phase.

Priority Optional Type Functional CUR 13 - 18

REQ-PLAT-MAINT-D-35 Short Name: Data Pipeline Definition and Execution

Description The Data Transformation Engine must support the definition/creation/execution of Data
manipulating Pipelines. Pipelines are defined as logical groupings of activities that per-
form one unit of work. To accommodate proper data manipulation, the Data Handling
Module must support activities related to Data Movement, Data Transformation and Data
Control.

Priority Desirable Type Functional CUR 13 - 18

REQ-PLAT-DATA-D-36 Short Name: Dataset Identification and Handling

Description The Data Transformation Engine must be able to identify data structures which provide
a SELECT view into data store. This allows pointing to a specific data subset to use in
activity for input and output.

Priority Desirable Type Non-Functional CUR 13 - 18

REQ-PLAT-DATA-M-37 Short Name: Data Flow Mapping

Description The Data Transformation Engine must be able to create and manage data transformation
graphs that work on any size of data. In addition, the module must be capable of building
up reusable libraries of data transformation routines as well as executing the specific
routines in pipelines (as activity) for scaling purposes.

Priority Mandatory Type Non-Functional CUR 13 - 18

REQ-PLAT-PERF-M-38 Short Name: Integration Runtime

Description The Data Transformation Engine must have the ability to map and properly define the
COMPUTE infrastructure that is needed for providing fully managed (i) Data flows (trans-
formation) (ii) data movement (movement) (iii) activity dispatch (route to service).

133



D4.1 - State of the Art and initial technical requirements

Priority Mandatory Type Non-Functional CUR 13 - 18, 30 - 35

7.4.8 Technical Requirements for implementing the Data Anonymization functionality of the
DATA Transformation Engine

REQ-DATA-PRIV-M-39 Short Name: Data Masking Support

Description Data masking refers to the disclosure of data with modified values. Data anonymization
is done by creating a mirror image of a database and implementing alteration strategies,
such as character shuffling, encryption, term, or character substitution.

Priority Mandatory Type Non-Functional CUR 13 - 18, 30 - 35

REQ-DATA-PRIV-M-40 Short Name: Pseudoanonymization Support

Description Pseudonymization is a data de-identification tool that substitutes private identifiers with
false identifiers or pseudonyms, such as swapping the "John Smith" identifier with the
"Mark Spencer" identifier. It maintains statistical precision and data confidentiality, al-
lowing changed data to be used for creation, training, testing, and analysis, while at the
same time maintaining data privacy.

Priority Mandatory Type Non-Functional CUR 13 - 15, 18

REQ-DATA-PRIV-M-41 Short Name: Generalization Support

Description Generalization involves excluding some data purposely to make it less identifiable. Data
may be modified into a series of ranges or a large region with reasonable boundaries.
For example, the house number at an address may be deleted, but make sure the name
of the lane does not get deleted. The aim is to remove some of the identifiers while
maintaining the accuracy of the data.

Priority Mandatory Type Non-Functional CUR 13 - 15, 18

REQ-DATA-PRIV-M-42 Short Name: Data Swapping Support

Description Data swapping – often known as permutation and shuffling – rearranges dataset attribute
values so that they do not fit the original information. Switching attributes (columns)
that include recognizable values, such as date of birth, can make a huge impact on
anonymization.

Priority Mandatory Type Non-Functional CUR 13 - 15, 18

REQ-DATA-PRIV-M-43 Short Name: Data Pertubation Support

Description Data perturbation modifies the initial dataset marginally by applying round-numbering
methods and adding random noise. The set of values must be proportional to the dis-
turbance. A small base can contribute to poor anonymization, while a broad base can
reduce a dataset’s utility

Priority Mandatory Type Non-Functional CUR 13 - 15, 18
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7.4.9 Data Lake Technical Requirements

REQ-PLAT-DATA-M-44 Short Name: Compatibility with the Hadoop Distributed File System (HDFS)

Description HDFS is the de-facto, open-source standard for running parallel analytics workloads at
consistent high performance. Any adopted Data Lake solution must be compatible with
it for being able to benefit from industry-standard features and capabilities.

Priority Mandatory Type Functional CUR 13 - 18, 30, 33

REQ-PLAT-DATA-M-45 Short Name: Compatibility with standardized Analytics Engines via a dedicated Query
Layer

Description The Data Lake must be compatible with contemporary analytic engines (i.e. Apache
Spark) for big data environments and machine learning.

Priority Mandatory Type Non-Functional CUR 13 - 18, 30, 33

REQ-PLAT-DATA-M-46 Short Name: Data Lake solution must be Data Source Agnostic

Description The Data Lake must be capable of storing a huge amount of raw data in a struc-
tured, semi-structured and/or unstructured storage format. More specific (i) Unstructured
data often correspond to text heavy data with structures that are not uniform (ii) Semi-
Structured data is typically data with associated metadata tags, giving it some sort of
loosely defined structure and (iii) Structured data refer to data with a rigid format, which
includes data residing in traditional databases like SQL servers and analysis services
cubes.

Priority Mandatory Type Non-Functional CUR 13 - 18, 30, 33

REQ-PLAT-DATA-M-47 Short Name: Native Data Type Support

Description Architectural components, their interaction and identified products should support native
data types

Priority Mandatory Type Non-Functional CUR 13 - 18, 30, 33

REQ-PLAT-DATA-D-48 Short Name: Data Lake REST API

Description The Data Lake must be able to seamlessly communicate/integrate with all existing tech-
nologies. The most efficient way to do so, is through a dedicated REST API, available
to all interconnected entities. In addition, the specific API must be used for exposing
disposable components.

Priority Desirable Type Functional CUR 13 - 18, 30, 33

REQ-PLAT-DATA-M-49 Short Name: Layered and Isolated Architecture

Description The overall Data Lake architecture must contain independent mechanisms for managing
data discovery, ingestion, storage, administration, quality, transformation, and visualiza-
tion. Moreover, the Data Lake design should be driven by what is available instead of
what is required. The schema and data requirement is not defined until it is queried. Al-
ways keep in mind that Unified operations tier, Processing tier, Distillation tier and HDFS
are important layers of traditional Data Lake architecture.

Priority Mandatory Type Non-Functional CUR 37
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7.4.10 Technical Requirements for defining the Architecture, certain Development quidelines
and the Verification process

REQ-DEV-USE-D-50 Short Name: Software Documentation

Description The developer must provide an Application/Service/Function blueprint that describes
how the Application/Service/Function is built, deployed and communicates with intercon-
nected entities/services/functional blocks.

Priority Desirable Type Other CUR 30 - 40

REQ-DEV-USE-M-51 Short Name: Main Codebase Repository Requirements

Description The main development repository of Application/Service/Function should allow (1) creat-
ing branches, (2) commit changes, (3) pull and push and (4) creation and cloning to/from
secondary repositories. (5) Different member’s options should be available (e.g. owner,
contributor, collaborator), (6) ticketing/issues tracking system (7) support different status
identification (e.g. draft, internal testing, etc.).

Priority Mandatory Type Other CUR 13 - 18, 30 - 40

REQ-DEV-USE-D-52 Short Name: Verification tools virtualization

Description Verification tools should be virtualized (e.g. dockerized) to provide a quick execution of
an isolated environment

Priority Desirable Type Non-Functional CUR 13 - 15

REQ-DEV-USE-D-53 Short Name: Exclusive verification tests

Description The developer should be able to execute verification and smoke tests in a isolated envi-
ronment for validating code functionality.

Priority Desirable Type Non-Functional CUR 6, 7, 8

REQ-DEV-USE-D-54 Short Name: Open-sourced validation tools

Description Validation tools should be open-sourced, unless specific contractual obligations prevents
this for some components or parts of the code

Priority Desirable Type Non-Functional CUR 6, 12

REQ-DEV-USE-D-55 Short Name: Validation framework containerization

Description Validation framework should be virtualized (e.g. containerized) whenever possible, to
provide a quick execution on an isolated environment

Priority Desirable Type Non-Functional CUR 12

REQ-DEV-AVL-M-56 Short Name: Cloud-native compatibility

Description The Validation Framework should support the deployment of cloud-native functions
Priority Mandatory Type Non-Functional CUR 30, 31
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7.4.11 SECURED Innohub Technical Requirements

REQ-PLAT-USE-M-57 Short Name: SECURED Toolbox / Software Repository

Description A dedicated repository must be available to store, search and download certified Appli-
cations Tools and Software that are willingly uploaded (compiled version / artifact)

Priority Mandatory Type Functional CUR 30 - 34

7.4.12 Technical Requirements for API Design

REQ-DEV-REL-D-58 Short Name: SECURED REST API for facilitating component interconnection

Description SECURED API should follow the principles of Representational State Transfer (REST)
RESTful API design is the process of designing an API that follows the principles of Rep-
resentational State Transfer (REST), which is the most popular API architecture today. In
a RESTful architecture, resources are identified by URIs (Uniform Resource Identifiers),
and the client interacts with those resources with standard HTTP methods such as GET,
POST, PUT, and DELETE.

Priority Desirable Type Functional CUR 30, 31, 36, 40

REQ-DEV-COMP-D-59 Short Name: SECURED API Security Practices

Description SECURED API must follow a security-driven design and therefore: (i) implement quotas
and throttling to limit the number of requests to a particular service in order to conserve
resources and ensure high availability, (ii) integrate appropriate headers to all API re-
sponses, (iii) introduce read and write granularity (iv) support input validation, sanitization
and encoding at the method level, (v) support logging and monitoring

Priority Desirable Type Non-Functional CUR 30, 31, 36, 40

REQ-DEV-USE-D-60 Short Name: SSECURED API Documentation

Description SECURED API Documentation should include (i) Authentication Instructions (ii) Detailed
information about endpoints, operations and resources (iii) examples of common re-
quests and responses

Priority Desirable Type Other CUR 30, 31, 36, 40

7.4.13 Technical Requirements for Third Party integration (Open Call)

REQ-DEV-COMP-M-61 Short Name: Extension - SECURED Infrastructure interaction

Description New services shall be able to interact with the SECURED Infrastructure though the open-
source SECURED REST API that will be specified in the project.

Priority Mandatory Type Functional CUR 30 - 40

REQ-DEV-COMP-M-62 Short Name: Extension - Remote Operational Control
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Description New services should provide means for remote operational control from the correspond-
ing SECURED Infrastructure entity (Controller / CLI / Admin UI)

Priority Mandatory Type Functional CUR 30 - 40

REQ-DEV-COMP-M-63 Short Name: User authorization to experimentation/development data

Description SECURED Infrastructure should ensure that third party developers/experimenters are
authorized to perform tests isolated, fully independent, without the ability to access other
experimenter’s data(sets).

Priority Mandatory Type Functional CUR 30 - 40

REQ-DEV-COMP-M-64 Short Name: Extension – SECURED Infrastructure secure communication

Description The connectivity link/communication channel between all entities/services shall be se-
cure, potentially with end-to-end encryption.

Priority Mandatory Type Functional CUR 10 - 12, 30 - 40

REQ-DEV-COMP-M-65 Short Name: Extension - User Authentication

Description New services should support various levels of authorization (i.e. remote user / centralized
user / administrator) and identification

Priority Mandatory Type Functional CUR 16, 30 - 40

REQ-DEV-COMP-M-66 Short Name: QoS Alerting Mechanism

Description New services should generate alerts if expected/predefined QoS cannot be reached, in
order to trigger adaptation/improvement mechanisms on the SECURED Infrastructure
side. The QoS should be the output of monitoring values/performance metrics such as
latency, throughput, uptime as well as application-specific KPIs

Priority Mandatory Type Non-Functional CUR 25, 33, 39, 40

REQ-DEV-COMP-M-67 Short Name: Extension – Behavior Monitoring

Description New services should be authorized to access exposed APIs based on continuous moni-
toring (behavior, traffic patterns, queries, etc) provided by the SECURED Infrastructure.
Monitored access could be utilized to ensure appropriate behavior or to detect potentially
malicious actions (i.e. DDoS-type attacks taking advantage of exposed APIs)

Priority Mandatory Type Non-Functional CUR 30, 31, 36

REQ-DEV-COMP-M-68 Short Name: Testbed-Experimenter collaboration

Description Specific details about the verification tests (scope, implementation) must be agreed be-
tween the experimenter and the testbed owner

Priority Mandatory Type Functional CUR 40
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7.4.14 Technical Requirements on the Data Anonymization Service and Tools

REQ-DATA-PRIV-M-69 Short Name: Anonymization service and tool for different, heterogeneous Health data
types

Description In SECURED use-cases we adopt several different types of datasets including health
image datasets, health timeseries datasets and EHR datasets. Thus the anonymiza-
tion Services/Anonymization toolbox should be able to anonymize various different data
types.

Priority Mandatory Type Functional CUR 10 - 20

REQ-DATA-PRIV-D-70 Short Name: Anonymization of high data volumes

Description The Anonymiation process should be able to work with out excessive delays and with out
loss of accuracy for high volume of health datasets of various types (also check REQ-
DATA-PRIV-M69)

Priority Desired Type Non Functional CUR 10 - 20

REQ-DATA-PRIV-D-71 Short Name: Offered Anonymization to withstand de-anonymization attacks

Description The provided Anonymization services/tools should be able to provide high quality
anonymized results that when assessed through the Anonymization Assessment ser-
vice/tools no vulnerabilities (or low risk vulnerabilities) will only be found.

Priority Desired Type Functional CUR 10 - 20

REQ-DATA-MAINT-M-
72

Short Name: Provide report/guarantee of anonymization process

Description The Anonymization service/tools should be able to log the history of anonymization/de-
anonymization rounds that took place as well as anonymity vulnerabilities that have been
discovered and potentially mitigated. This log/report should be part of a privacy guaran-
tee that must be associated with the outcome of the Data Transformation service (related
to the anonymized and anonymization assessed dataset as well as and bias that has
been removed from the dataset).

Priority Mandatory Type Functional CUR 10 - 20

7.4.15 Technical Requirements on the Anonymization Assessment Service and Tools

REQ-DATA-SEC-M-73 Short Name: Assess anonymized dataset for Timeseries Health Data

Description Since Health Timeseries Data are been used by several of the SECURED use-case it is
mandatory to be able to assess the anonymity of such datasets and discover potential
privacy leakage

Priority Mandatory Type Functional CUR 10 - 20

REQ-DATA-SEC-M-74 Short Name: Assess anonymized dataset for Image Health Data
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Description Since various types of Health Image Data are been used by several of the SECURED
use-case it is mandatory to be able to assess the anonymity of such datasets and discover
potential privacy leakage

Priority Mandatory Type Functional CUR 10 - 20

REQ-DATA-SEC-M-75 Short Name: Assess anonymized dataset for Electronic Health Record Data

Description Since EHR Data are been used by several of the SECURED use-case it is mandatory to
be able to assess the anonymity of such datasets and discover potential privacy leakage

Priority Mandatory Type Functional CUR 10 - 20

REQ-DATA-SEC-O-76 Short Name: Provide broad-scope de-anonymization techniques

Description Based on the deliverable’s SoTA, there exist several, very different techniques to assess
the anonymity of a dataset. This is highly related to the dataset type, the data volume
and the specific characteristics of this dataset. In SECURED, such techniques will be
handled under a flexible and generic framework so that the provided solution can cover
a broad range of de-anonymization attakcs and countermeasures

Priority Optional Type Functional CUR 10 - 20

REQ-DATA-SEC-M-77 Short Name: Provide report of Anonymization assessment

Description The Anonymization assessment service/tools must provide a report that detail the per-
formed de-anonymization attack, their outcome in terms of discovered vulnerabilities as
well as potential guidelines for the means to patch such vulnerabilities.

Priority Mandatory Type Functional CUR 10 - 20

7.4.16 Technical Requirements on the Synthetic Data Generation Engine

REQ-SHW-PERF-M-78 Short Name: Access to HPC hardware for efficient synthesis (several CPUs,
GPUs. . . )

Description The proposed methodologies are usually quite compute intensive, therefore they need
to have good enough hardware to compute.

Priority Mandatory Type Non-Functional CUR 10 - 20

REQ-DATA-DATA-M-79 Short Name: Generate data for different data types and modalities

Description The data generator needs to generate data for each type of data type and modality
agreed.

Priority Mandatory Type Functional CUR 10 - 20

REQ-DATA-DATA-D-80 Short Name: Data novelty evaluation

Description The generated data must not be equal or closely related to the training data. This is
needed to avoid reidentification of the original samples and data leaks.

Priority Desirable Type Functional CUR 10 - 20
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7.4.17 Technical Requirements on Anonymization Decision Support

REQ-DATA-PRIV-M-81 Short Name: Privacy risk and data utility trade-off mechanisms for different health data
types.)

Description The core functionality of the Anonymization Decision Support component is to be able to
assist users in determining the optimal techniques and tools to anonymize their datasets.
Thus, Anonymization Decision Support should provide for a given dataset the privacy risk
and that data utility trade-off that the choice of a specific anonymization technique will
have as a result to the dataset.

Priority Mandatory Type Functional CUR 28 - 38

REQ-DATA-PRIV-D-82 Short Name: User friendly anonymisation decision support and anonymization tools)

Description The complexity of the Anonymization Decision Support, the Data Anonymization Toolset
and the Anonymization Service dictates the need for a user-friendly and easily-applicable
process of using the tools and the service. This requirement is also applicable to the
requirements on Data Anonymization Toolset and the Anonymization Service.

Priority Desirable Type Non-Functional CUR 10 - 20

7.4.18 Technical Requirements on the Secure Multi-Party Computation (SMPC) Engine and
Secure Multi-Party Computation (SMPC) Transformation

REQ-DPROC-SEC-M-
83

Short Name: Seamless integration of SotA open-source SMPC/HE libraries.)

Description There exist several open source SMPC/HE libraries librearies that could be used for the
use-cases and objective of SECURED. Incorporation of libraries that best fit the SE-
CURED objectives incl integration with ML/DL tasks needs to be made.

Priority Mandatory Type Non-Functional CUR 10 - 20

REQ-DPROC-SEC-O-
84

Short Name: Cost Estimator for MPC/HE protocols.)

Description Since each SMPC/HE library has different performance cost, given that the SMPC Engine
is closely related to the SMPC transformer component, a mechanism is need to assist
the user on choosing the proper library to be used based on the cost that such library will
have. This requirement is linked to both the SMPC Enine and SMPC Transformation

Priority Optional Type Non-Functional CUR 10 - 20

REQ-DPROC-PERF-D-
85

Short Name: Circuit optimizer for hardware acceleration of HE.)

Description Tools exist to optimize circuits for SMPC/HE, but these will not take into account if we have
hardware components to do e.g. HE operations that are slow in hardware on commodity
CPUs. Hardware Optimizations need to be made in order to improve the performance of
an SMPC/HE circuit.

Priority Desirable Type Non-Functional CUR 10 - 20
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REQ-DPROC-PERF-D-
86

Short Name: SMPC or HE solutions very fast response time)

Description Since use-case 1 has requirements for near-real time the SMPC Engine should be able
to provide fast SMPC/HE response when processing encrypted or SMPC transformed
data.

Priority Desirable Type Non-Functional CUR 10 - 20

REQ-DPROC-SEC-M-
87

Short Name: Customized, adaptable SMPC Transformation process

Description The Transformation process must provide the user with the means to use in a simple and
realistic manner the SMPC Engine libraries to generate a SMPC/HE enabled Model. The
process for such operation must be made customised/adaptable so that it can allow, as
much as possible, the reuse of some library component, mechanisms and techniques.

Priority Mandatory Type Functional CUR 10 - 20

7.4.19 Technical Requirements on the Bias Assessment Service and Tools

REQ-DATA-REL-M-88 Short Name: Provide accurate bias score for a given dataset.)

Description After analyzing a given dataset for biasing the Bias Assessment tool must be able to
provide an indicator of the bias level such a dataset has. Thos bias score should be
must be realistic and accurate to provide conclusive decisions on how biased a dataset
is.

Priority Mandatory Type Functional CUR 10 - 20

REQ-DATA-REL-M-89 Short Name: Detection of Bias in Timeseries Health Data.)

Description Since Health Timeseries Data are been used by several of the SECURED use-case it is
mandatory to be able to detect bias on such datasets.

Priority Madatory Type Functional CUR 10 - 20

REQ-DATA-REL-M-90 Short Name: Detection of Bias in Image Health Data)

Description Since various types of Health Image Data are been used by several of the SECURED
use-case it is mandatory to be able to detect bias on such datasets.

Priority Mandatory Type Functional CUR 10 - 20

REQ-DATA-REL-M-91 Short Name: Detection of Bias in Electronic Health Record Data.)

Description Since EHR Data are been used by several of the SECURED use-case it is mandatory to
be able to detect bias on such datasets.

Priority Mandatory Type Functional CUR 10 - 20

REQ-DATA-REL-M-92 Short Name: Detection of Bias in Anonymized Datasets.
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Description Given that the bias assessment is part of the Data Transformation Engine and operates
in conjunction with the Anonymization Service and toolset, the bias assessment must be
able to discover bias in anonymized datasets.

Priority Mandatory Type Functional CUR 10 - 20

REQ-DATA-PRIV-M-93 Short Name: Provide analytic bias assessment reports.

Description The Bias Assessment service/tools must provide a report that details the performed bias
assessment approaches, their outcome in terms of discovered bias as well as potential
guidelines for unbiasing the dataset.

Priority Mandatory Type Functional CUR 10 - 20

7.4.20 Technical Requirements on the Unbiasing Service and Tools

REQ-DATA-PRIV-M-94 Short Name: Unbiasing of Timeseries Health Data.)

Description Since Health Timeseries Data are been used by several of the SECURED use-case it is
mandatory to be able to unbias such datasets.

Priority Mandatory Type Functional CUR 10 - 20

REQ-DATA-PRIV-M-95 Short Name: Unbiasing of Image Health Data.)

Description Since various types of Health Image Data are been used by several of the SECURED
use-case it is mandatory to be able to unbias such datasets.

Priority Madatory Type Functional CUR 10 - 20

REQ-DATA-PRIV-M-96 Short Name: Unbiasing of Electronic Health Record Data

Description Since EHR Data are been used by several of the SECURED use-case it is mandatory to
be able to unbias such datasets

Priority Mandatory Type Functional CUR 10 - 20

REQ-DATA-PRIV-M-97 Short Name: Unbiasing of Anonymized Datasets)

Description Given that the unbiasing service/toolset is part of the Data Transformation Engine and
operates in conjunction with the Anonymization Service and toolset, unbiasing must be
performed on anonymized datasets.

Priority Mandatory Type Functional CUR 10 - 20

REQ-DATA-PRIV-M-98 Short Name: Provide report/guarantee of the Unbiasing process.

Description The Unbiasing service/tools should be able to log the history of unbiasing rounds that
took place as well as the bias that have been discovered and how it was removed. This
log/report should be part of a privacy guarantee that must be associated with the outcome
of the the Data Transformation service.

Priority Mandatory Type Functional CUR 10 - 20
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8 Conclusions

In this Deliverable we have documented the current State-of-the-Art (SoTA) on the various topics that SE-
CURED project deals with i.e. Secure Multi-Party Computation (SMPC) solutions with a focus on Homomorphic
Encryption (HE) and how SMPC/HE libraries can be scaled up using algorithmic and hardware acceleration,
anonymization and de-anonymization schemes of health data, bias and unbiasing as well as synthetic data
generation of health data. All of these topics have been viewed from the perspective of Machine Learning
(ML)/Deep Learning (DL)/Federated Learning (FL) solutions that are related to the SECURED use-cases. For
this reason, we also document the SoTA of health data related to ML/DL/FL research. We have extracted
preliminary SoTA gaps that constitute useful research points during the SECURED project’s lifetime and also
provided a critical view of the existing tools/techniques that will help the consortium focus on research that is
compatible to the SECURED solution while also yielding research outcomes that are beyond the SoTA. Apart
from this reporting, in the deliverable we also documented the interactions with the use-case providers and
their outcomes from M1-M6 to extract using the user journey/process mapping methodology, preliminary user-
requirements, and a realistic/practical preliminary SECURED architecture. We also described the components
of this architecture and link it to the four use-cases of the SECURED project while in parallel making it possible
to extend it so as to cover additional use-cases after the completion of the SECURED open call for evaluators.
Eventually, we analyzed all the above outcomes (i.e SoTA Gaps, preliminary user-requirements, SECURED
architecture components, existing integration technologies) and provided a series of Technical Requirements
for each SECURED architecture component that will guide the realization of the whole SECURED solution. It
can be concluded that there is a lot a space for new research results to be made out of the project and that the
use-cases of the project need to adopt unique views of the SECURED architecture. However, the SECURED
architecture including the SECURED Federation Infrastructure and the SECURED Innohub manages to fully
support all four use-cases and is generic enough to support additional use-cases. Another interesting conclu-
sion from the performed analysis (especially on the existing SoTA) is that within the consortium we will have to
develop tailored to the use-cases Privacy-Enhancing Technologies (PETs) applications that are closely related
to the available datasets. However, on the other hand, the core concept (SECURED Innohub), services, Soft-
ware and Hardware libraries and tools to be used remain generic enough to address any application. Eventually,
this principle dictates all provided Technical Requirements (i.e generic solution approach) and the preliminary
SECURED architecture as a whole. Finally, it should be noted that D4.1 is a preliminary deliverable of the T4.1
activities so it is expected that some of the described concepts, requirements, and other items in the deliverable
will possibly be updated before the end of the task (at M18) given that by that time the T5.1 activities on user
requirements will also be concluded (given user requirements and technical requirements are logically linked).
All updates as well as the final SECURED Architecture, the interconnection between components and the struc-
ture of the exchanged data between components will be provided in the final deliverable (i.e. Deliverable 4.2)
of T4.1.
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