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1 Executive Summary

The goal of SECURED is aimed at realizing a hub that provides tools and services for Anonymization, Deanonymiza-
tion, Secure Multiparty computation and Unbiasing of Health data that can be utilized by a broad range of users
to build privacy preserving health application in a collaborative manner. Central to this initiative is the develop-
ment of a library comprising tools designed to facilitate secure processing of data coming from several sources.

In essence, SECURED is committed to fostering innovation through two interconnected workflows. The first
workflow, termed Data Flow, deals with anonymization of data, making possible the secure sharing and acces-
sibility of data through anonymization and by generating synthetic versions of datasets. Simultaneously, the
Processing Flow workflow focuses on securely processing and analyzing data within the healthcare ecosystem.
This report provides a summary of the initial progress made in the research and development activities related
to the latter Processing Flow. This work was preceded by Deliverable 4.1, which involved a comprehensive
review of the current state of the art regarding available tools and concepts, and that served as starting point
for the activities described here.

WP3 focuses on four primary research areas for data processing: Federated Learning (FL), Unbiased Atrtificial
Intelligence (UB), Secure Multi-Party Computation (SMPC) and Homomorphic Encryption (HE). This deliverable
presents:

+ A brief introduction of the WP3 work package and of the relation between the technologies developed in
this work package and the SECURED Use Cases.

» The description of the initial development of the Privacy-Enhancing Technologies (PETs) used in the
SECURED project, that lead to the following initial achievements:

— SMPC/HE: A preliminary analysis of available SMPC and HE libraries has been performed, con-
sidering computational tasks relevant for the SECURED use cases, such as encrypted inference in
neural networks. Furthermore, selected HE libraries have been assessed using specific KPls and
benchmarked with relevant micro-benchmarks.

— FL: A thorough Risk Analysis evaluated how to develop federated learning solutions that are both
versatile and lightweight, scalable to the project use cases. The first selection of available libraries
was done accordingly.

— UB: First analysis had been made about Fairness for generative Al, which emerged as a highly
relevant property for SECURED during the development of the project and was thus not covered in
Deliverable D4.1.

» The conclusions that we draw from the current analysis and the planned immediate next steps.
The activities within this work package will culminate into the processing flow part of the SECURED library. In
parallel, WP2 is developing the data flow components of the SECURED library. Both libraries will be integrated

into the SECURED Innohub. This deliverable depicts the status of WP3 at M14 of the project, and reports
current and future directions of the work package activities.

Related Documents

+ SECURED Deliverable D1.2 - GDPR and Ethics Project Guidelines

SECURED Deliverable D1.6 - Data Management Plan

+ SECURED Deliverable D2.1 Interim report on data anonymization, deanonymization and synthetic data
generation techniques, tools and services

SECURED Deliverable D4.1 — State of the Art and initial technical requirements
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2 Introduction

2.1 The role of WP3 tasks in the SECURED project

In the context of the SECURED project, WP3 focuses on the processing flow, and in particular on scaling up
secure and private processing technologies. These include Secure Multi-Party Computation and Homomaorphic
Encryption, secure Federated Learning, and Unbiased Atrtificial Intelligence techniques. The outputs of WP3
will converge into the Innohub in WP4 and will be validated through the use cases in WP5.

Figure 1 depicts the interconnections between the components contributing to the work package. Research
and development activities cover various methods for processing distributed data and the secure and unbiased
training of Al models. The project arranges these activities into three main categories as follows.

LIBRARY

INNOHV®

Figure 1 — The overall structure of information flow in WP3: three technical tasks build up the library in cooperation. The development will converge in the
SECURED Innohub, which includes also components developed in other work packages. The SECURED Use Cases will “loosely” drive the selection of
components and the optimization criteria.

1. Research and development of SMPC and HE schemes and associated primitives: This includes optimiz-
ing and accelerating SMPC and HE schemes for large-scale computation, as well as their application to
specific health data computation scenarios.

2. Design of privacy-preserving and robust Federated Learning algorithms: This includes threat analysis,
mitigation of privacy leakage, detection and elimination of misbehaving clients, and investigations on
benchmark attacks with the secure federated learning framework.

3. Development of methods and tools to detect and mitigate biases in Al models: This includes establish-
ing a baseline model for evaluating data bias, assessing bias on classical criteria like disparate impact
and differential fairness, and developing mitigation strategies using preprocessing, in-processing, post-
processing, or synthetic data.

The output of this research will converge into a library that implements the schemes, the optimizations, and the
techniques developed. As part of the validation of the results, the techniques and the library will be used in the
scenarios identified by the use cases (including the ones selected through the open call). The Use Cases will
provide useful insight in the development of the technologies, but our ambition is to develop general solutions
that can be applied in a wider number of applications. As such, the Use Cases do not impose strict require-
ments on the activities, but rather establish a baseline and offer metrics and feedback on the implementations.
Ultimately, the project’s end-product, the Innohub, will integrate the final results.

UC 1 provides an example of a scenario where performance requirements for the algorithms, primarily time com-
plexity, are crucial to the successful processing. To ensure the feasibility of near “real-time” ultrasound-
guided neurosurgery in practical scenarios, tools provided by SECURED must aim at producing results
compatible with such scenario.

10
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uc2

ucs3

uc 4

2.2

stresses privacy in distributed data collection scenarios and sets a baseline for the robustness of Al mod-
els. The telemonitoring application for children deals with sensitive data from a vulnerable population,
where technical issues can lead to unsuitable data for training and improving Al models. Filtering out
biases and ensuring fairness, especially for minorities or rare diseases, are key aspects of the processing
methods.

addresses the issues of preventing the leakage of training data and protecting the characteristics of gen-
erative Al models. In the context of synthetic data generation for education, it is crucial that the generated
data does not disclose enough information to identify any of the original data providers. Additionally, the
model’s features should not enable reverse-engineering to maintain fairness in examinations. The gen-
eration of rare yet significant cases, as opposed to commonplace and frequent examples, presents a
challenge for bias-processing methods.

outlines measures for securely processing large-volume datasets. When accessing genomic data for
research and healthcare, maintaining the highest level of privacy is essential. This confidentiality is critical
not only for the data provider, but also for all their biological relatives who may be affected.

Structure of the document

The remaining part of this deliverable presents results in the following sections:

section 3 summarizes the progress made in Secure Multi-Party Computation (SMPC) and Homomorphic En-

cryption (HE) methods. It provides an overview of the selection criteria for software libraries to
be utilized in the SECURED project and indicates some of the initial challenges related to privacy-
enhancing computation that will be addressed in the upcoming phases. Further, it delves into the
analysis of selected Homomorphic Encryption (HE), by means of performance indicators defined for
the purpose and by means of micro-benchmarks. Results of the profiling are provided in compre-
hensive tables.

section 4 offers a comprehensive rationale for the choice of solutions in the Federated Learning (FL) implemen-

tation. This section begins with the selection of appropriate types, followed by a detailed description
of two software libraries. The selection criteria are presented alongside a thorough risk analysis,
both in general terms and for each use case.

section 5 introduces early-stage fundamental research on Unbiased Artificial Intelligence (UB) and fairness,

exploring relevant mathematical concepts. The connection with the project is illustrated through a
questionnaire concerning the use cases.

section 6 concludes the report.

11
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3 Secure Multi-Party Computation and Homomorphic Encryp-
tion

In this section, we concentrate on the Privacy-Enhancing Technologies (PETs) that will be used in the SE-
CURED, namely Secure Multi-Party Computation (SMPC) and Homomorphic Encryption (HE). A more thor-
ough exposition can be found in SECURED deliverable D4.1, or in topic-specific textbooks [1, 2]. We report
here the basic concepts of these technologies for completeness and discusses them with particular focus on
encrypted inference. Then, we focus on libraries implementing HE, and we compare them using several KPIs
definied for the purpose, and experimentally with a relevant micro-benchmarks.

3.1 Technology Overview

SMPC allows a group of parties to jointly perform some computation without revealing any of the parties’ inputs,
while HE allows an evaluator to compute some function on encrypted data. Both techniques can be ftrivially
realized with a trusted third party that handles all data, and the purpose of Secure Multi-Party Computation
(SMPC)/Homomorphic Encryption (HE) tools is to emulate this trusted party (among the communicating parties)
by means of cryptography.

A simple example task for SMPC is privacy-preserving Federated Learning (FL) (see Section 4 for a more
thorough overview of FL): in each round, a group of parties collectively train a Machine Learning model by
providing parameters, in a way that does not leak these parameters to the other training parties or the aggregator
(the eventual holder of the model). An example for HE is privacy-preserving Machine Learning inference: a
client wants to make a query to a proprietary Machine Learning model without revealing the input query or the
output result, while the server that holds the model wants to keep their intellectual property private. The client
encrypts the input and sends it to the server, which then homomorphically evaluates the model and sends the
result back to the client, who can decrypt to get the correct output. More details on how to apply HE to ML
inference can be found in Section 3.2.2.

A wide range of candidate schemes’ exist for both SMPC and HE that collectively provide a wide variety of
functionalities, security properties and performance tradeoffs. Very generally speaking, SMPC schemes will
often have simple computational operations in a large number of communication rounds, while HE schemes will
be much more computationally complex but operate in one round. For some tasks, such as inference of neural
networks with non-linear activation functions [3, 4, 5], combining both SMPC and HE can provide considerable
performance gains. So choosing one and then choosing a single software library is not as simple in general.

3.2 Investigations

3.2.1 Scaling up SMPC and HE

The main goal of this component of the SECURED project is to scale up the performance of Secure Multi-
Party Computation (SMPC) (and Homomorphic Encryption (HE)) tools, and this can be realized via multiple
concurrent efforts.

Primitives that underpin modern HE libraries require huge overheads (relative to plaintext computation) for
memory, computation time and communication bandwidth. The first workstream of the scaling-up task is to
investigate the potential of hardware acceleration, meaning purpose-built hardware for the computational tasks
present in existing HE schemes and libraries. This workstream will also attempt to identify where hardware
acceleration can be used to provide more performant SMPC, however this task has lower priority than the

A note on nomenclature: constructions for SMPC are usually regarded as interactive protocols between a group of parties that contain
a number of primitives as sub-routines, while HE can be cast as a primitive to be used in an interactive protocol. As a result, we use
schemes to refer to the eventual instantiations for either SMPC or HE (or a combination of the two), meaning the technical subcomponents
plus the necessary communication logic.

12
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component looking at HE.

The second workstream is to target algorithmic optimization for SMPC and HE for the processing tasks that are
relevant to the SECURED project.

Thirdly, the project aims to provide more performant privacy-preserving federated learning, and in particular
the task of secure aggregation. More details on Federated Learning (FL) and its role in the SECURED project
can be found in Section 4, and much of the discussion is deferred to that part of this document. It is important
to note that there are many avenues for improving secure aggregation (and other related sub-tasks of FL) in
scenarios that require various different security properties, and the tasks related to SMPC and FL are therefore
closely intertwined.

3.2.2 Encrypted ML Inference

This section briefly describes the steps involved in performing ML inference using HE, meaning that the party
providing input wishes to keep that input secret from the holder of the ML model. Note that this section is
geared towards ML but the lessons learned and techniques can also be applied to other scenarios requiring
homomorphic evaluation.

As a reminder, a homomorphic encryption scheme allows party A to encrypt some message m to get a ciphertext
C, send this ciphertext to party B who applies a homomorphic evaluation operation that takes as input C and a
function f and outputs a ciphertext C’ that party A can decrypt to f(m).

The central challenge of encrypted ML inference comes from the fact that HE schemes struggle to (homo-
morphically) evaluate certain non-linear functions on ciphertexts. If the larger function contains some of these
‘difficult’ functions under the hood, then HE computation requires extra measures to prevent lower accuracy of
the function. For instance, convolutional neural networks (CNN) compose of certain activation layers with non-
linear functions. Various methods have been proposed to approximate such functions while retaining accuracy.
More information about the ‘HE-friendliness’ of various neural network operations can be found in a study by
Obla et al. [6]. The workflow therefore becomes:

1. Train (or receive) a ML model, i.e., fix its structure and parameters/weights and test the model’s accuracy;
2. Ildentify the “difficult” functions in the model, e.g., Rectified Linear Units(ReLU) activation function;

3. Replace these functions with HE friendly alternatives or with polynomial approximations of the original
functions, e.g., replace ReLU with Swish or approximated ReLU;

4. Test the new model’s accuracy and accept if it is sufficiently close to that of the original model, else adjust
accuracy of approximations.

This process needs to work in tandem with the constraint of HE schemes, for example TFHE [7] as used in
Concrete-ML is restricted to 16-bit integers, meaning that quantization is required. This process inherently
affects the accuracy of a model, however the bit-width of the entire system then becomes a tunable parame-
ter that provides a trade-off between accuracy and inference speed in the encrypted domain. There are two
approaches for performing quantization:

 Post-Training Quantization (PTQ) simply adjusts all model weights to be within a certain bit-width;

» Quantization-Aware Training (QAT) performs the training process in a way that incorporates quantization
throughout.

Quantization in the context of HE has been described in many works, including [8] (where the eventual models
were referred to as discretized neural networks), and [9].

A goal of the next stage of the project is to further investigate the accuracy loss in both PTQ and QAT for
the neural networks that will be of interest to the SECURED use cases (and later, the open call), in addition

13
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to investigating the possibility of more efficient workflows when applying privacy-preserving techniques to ML
inference. Preliminary results demonstrating PTQ accuracy and execution time with encrypted inference can
be found in Section 3.4.2.

3.2.3 Libraries for SMPC and HE

Schemes for SMPC and HE are normally very general, meaning that they can support computing arbitrary
functions on encrypted data. In practice, the function being computed has a major impact on the viability
of a given scheme, and therefore it is useful to categorize schemes based on their usefulness for particular
processing tasks. In order to narrow the focus, a first step is to assess which schemes are of potential interest
for the computation tasks being considered in the SECURED project, and this step then feeds into the task of
choosing suitable libraries.

For the task of hardware acceleration, it is often challenging to assess the suitability for incorporating accel-
eration techniques. The libraries for SMPC and HE in question often support multiple schemes, which in turn
use multiple lower-level libraries, and acceleration can see major gains when performed on the time-consuming
operations in these lower-level libraries. It is also necessary to take into account which of these operations are
present in multiple of the schemes, and whether the field/ring these operations act in is consistent among the
different schemes.

The following text indicates some libraries for SMPC/HE that were considered but eventually not pursued as
part of the SECURED project. Lattigo [10] is a HE library written in the Go language, developed with dis-
tributed systems in mind. Integrating Go with the other components of the SECURED infrastructure such as
dedicated hardware units would likely have resulted in many challenges®. SCALE-MAMBA [11] library is a general-
purpose SMPC library, but active development stopped over two years ago. The FANNG-MPC framework [12]
is a successor to SCALE-MAMBA targeted at Machine Learning applications, however, it is only very recently
introduced and source code is at the time of writing unavailable. However, some forked versions are under
active development [13]. The swanky [14] library was regarded as not being mature enough for deployment in
SECURED.

At the time of writing, we have identified the EzPC [15, 16] and CrypTen [17, 18] libraries as being promising for
use with SMPC in the context of Machine Learning if the need arises in later stages of the SECURED project.
EzPC is particularly appealing for its CryptFlow component [19, 20] that converts TensorFlow or ONNX models
into SMPC protocols: if any of the participants in the open call require that the ML model be kept private, then
this could add value to the software solution. CrypTen essentially acts as a SMPC wrapper around PyTorch,
meaning that regular operations of PyTorch can be performed but in a way that is by default done using an
appropriate SMPC mechanism. At the time of writing, however, neither EzPC nor CrypTen appear to provide
any benefits that are directly applicable to the use cases of SECURED that are not already provided by our
chosen libraries (below).

After these considerations have been taken into account, the following three libraries appear to be the most
promising for meeting the goals of the project for the use cases and the open call.

OpenFHE. The OpenFHE library [21] is a general-purpose HE framework supporting a large number of schemes
and a large degree of configurability.

Concrete-ML. Concrete-ML [22] is a privacy-preserving Machine Learning library that enables running Machine
Learning inference in the HE setting. It uses the TFHE scheme [7] for encryption operations. The closely related
Concrete [23] library is built on the same TFHE instantiation, and can be regarded as the more general version
of Concrete-ML.

MP-SPDZ. MP-SPDZ [24] is a general-purpose SMPC library. It has been used as a tool in many academic
projects that enable privacy-preserving options for workflows similar to the ones considered in SECURED.

2In essence, the main reason that one would choose to use Lattigo is if the rest of the system uses the Go language. The library does
not offer any additional HE schemes compared to other libraries, and furthermore it is maintained by a private company (Tunelnsight SA)
who may choose to stop open-source development at any time.
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3.2.4 Interfaces of SMPC and HE Libraries

This section will describe the steps that a user needs to take in preparing to use the three libraries that are
provisionally decided to be the most promising for use in the SECURED project.

OpenFHE. OpenFHE [21] supports a wide-range of FHE schemes, combining multiple design decisions made
from previous FHE projects such as PALISADE [25] or HEAAN [26]. OpenFHE focuses on not only supporting
multiple back-ends to facilitate hardware acceleration, but also providing a user with a configuration that removes
most parameter selection and generally improves the ease of use to start with FHE. In practice, this means one
can use OpenFHE for common FHE schemes, including but not limited to BGV, BFV or CKKS, by creating a
CCParams struct in C++ and specifying the CryptoContext (i.e. scheme) to be used. Making the decision of
what scheme to pick would be the first area of parameters for a user to think about, but once this has been
selected, the library will automatically provide default configurations for many values regarding the scheme to
be used. However, a user might still need to input a multiplicative depth and can additionally tweak parameters
related to the required security level of 128 bits, 100 bits, 192 bits, 256 bits or non-standard security level, which
will require the user to estimate the ring dimension for the desired amount of bits. All these options are to be
set before the encrypted communication in the CryptoContext, after which the OpenFHE HE operations can
be used.

Concrete and Concrete-ML. Concrete [23] is built on top of the TFHE scheme [7], and therefore can be seen
as a compiler that transforms Python functions into a domain that is suitable for TFHE: in the library docu-
mentation [27] these resulting functions are referred to as Concrete circuits. The Concrete documentation lists
which Python operators and which NumPy functions are natively supported, though it is not possible to define
functions that have floating point inputs or outputs (intermediate floating point values may be possible, but only
if the function can map them to an integer table lookup). This process requires the user to define the input set
(bit width and shape) and also to gain an understanding of whether the operations make sense in the encryption
domain, for example the evaluation function cannot have an if statement that uses an encrypted value.
Concrete-ML [22], which is built on top of Concrete, is used for privacy-preserving inference in Machine Learn-
ing models. As discussed in Section 3.2.2 there are two approaches for encrypted inference, QAT and PTQ.
There are largely four areas of inputs to develop a model in a QAT approach. The first area is the training and
evaluation data. The second area is the parameters for the Neural Network structure, such as number of layers
and the types of activation functions. The third area of input is the quantization parameters including number of
bits for weights, number of bits for activation and inputs, and maximum accumulator bit-width. The fourth area is
the choice between scikit-learn and PyTorch. For applying PTQ to already-trained models, the library needs
a number of bits as a quantization parameter and the model itself: this can either be a customized Concrete-ML
model, a PyTorch model, or an ONNX model.

MP-SPDZ. Since MP-SPDZ [24] is a general-purpose SMPC library, it is required to know beforehand (i) the
number of parties participating in the computation; (ii) which of the participating parties will do computations,
which will provide inputs, and which will receive outputs?; (iii) the function being computed; (iv) which function
inputs are public (if any) and the format of the public and private inputs; (v) which function outputs are public (if
any) and which parties should receive which function outputs; (vi) the security model in which the computation
will be conducted. It must also be decided if the system setup defined by these parameters implies that a (data-
independent) pre-processing phase is required.

Once these decisions are made, the function being computed must be converted to a suitable format for MP-
SPDZ. Many Machine Learning algorithms are natively supported by MP-SPDZ, including logistic and linear
regression, decision trees; it is also possible to import pre-trained models directly from PyTorch and to use a
Keras interface for training.

3Note that additional configurations exist, for example the so-called dealer model where one party provides correlated randomness to
other parties, more details can be found in the MP-SPDZ documentation [28].
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3.3 Comparison of Homomorphic Encryption Libraries

In the following, we describe the initial results in evaluating the tools and libraries that are of interest to the
SECURED project. At this stage, the main focus has been on tools related to HE, both in terms of assessing
which libraries are the best options for applying a given scheme and also which schemes are the best options for
given tasks. We decided to focusing initially on Homomorphic Encryption (HE) (rather than SMPC) for two main
reasons. Firstly, the performance of HE schemes varies hugely depending on the task being performed and
the parameters of the scheme, such as the choice between BFV or CKKS. Secondly, the HE component of this
work package is the one that is most promising for acceleration with dedicated hardware. As a consequence,
an in depth analysis is necessary to identify as early as possible which schemes and sub-operations of those
schemes are the more relevant targets for the being accelerated during the next stages of the project.

As discussed in Subsection 3.2, well-established open-source libraries for HE have already been developed by
both academia and industry. Here, a more in-depth discussion is given on how the libraries that were selected.
Their fitness with the SECURED project was assessed with a number Key Performance Indicators (KPlIs).
Subsection 3.3 describes the KPIs that have been identified as relevant for the SECURED project. Based on
our assessment, we selected Concrete-ML [22] for specific ML-related applications and statistics operations and
OpenFHE [21] for any other application. We thus proceed testing these libraries. Subsection 3.4 investigates
the main bottlenecks in these libraries and will serve as base for the acceleration approaches.

The Fig.2 provides a structural overview of the relationships among the libraries and how they are connected
through specific interfaces.
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Figure 2 — High level overview of the relationship among libraries.

The HE libraries are assessed using a set of KPIs that we first define in Subsubsection 3.3.1. We provide a
definition, motivate the relevance, and explain how the KPI is measured. Then, we present and discuss the
results for each library in Subsubsection 3.3.2.

3.3.1 Key Performance Indicators (KPIs)
SIMD support

Purpose: Modern processors generally support performing operations on data in a vectorized manner, i.e.
applying the same operation on multiple data. This paradigm is known as Single Instruction Multiple Data
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(SIMD). SIMD instructions can offer significant speed-ups when a program is compiled with them enabled.

Definition: We define SIMD support as the out-of-the-box support, i.e. the library offers support for SIMD by
itself, for compiling and running the schemes with SIMD instructions of a specific library.

How to measure: Given a specific library, SIMD support is classified in these 2 levels:

* 0 - The library does not offer any out-of-the-box support for running the schemes with SIMD instructions.

* 1 - The library does offer out-of-the-box support for running the schemes with SIMD instructions or a
connection to SIMD backend (e.g. Intel HEXL).

Parallelization support

Purpose: As modern processors are built with multiple hardware threads, it is crucial for performance to opti-
mally utilize them in parallel. Preference will be given to libraries that do not assume single-threaded execution.

Definition: We define parallelization support as the out-of-the-box support for compiling and running the
schemes with multiple threads of a specific library.

How to measure: Given a specific library, parallelization support is classified in these 2 levels:

* 0 - The library does not offer any out-of-the-box support for running the schemes with multiple threads. It
provides only single-threaded execution.

» 1-The library does offer out-of-the-box support for running the schemes with multiple threads. It provides
support for a multi-threading library (e.g. OpenMP).

GPU acceleration support

Purpose: As some libraries that implement some schemes are written in a way to enable parallel execution,
some libraries offer the ability to use GPU to execute these parallel-friendly tasks. Indeed, some schemes may
benefit from the vast number of cores in a GPU and report a speed-up on the execution time.

Definition: We define GPU acceleration support as the out-of-the-box support for the use of GPUs for the
underlying scheme computations of a specific library.

How to measure: Given a specific library, support for acceleration using GPUs is classified in these 2 levels:

» 0 - The library does not offer any out-of-the-box support for a backend that is using GPUs for accelerating
the scheme computations.

+ 1-The library does offer out-of-the-box support for a backend that can make use of GPUs for accelerating
the scheme computations.

Dedicated Hardware Acceleration Support

Purpose: Hardware acceleration can lead to large performance increases in specialized environments. |If
certain devices, for example GPUs, or techniques, for example parallelization, are not available, hardware
acceleration can offer another option for speed-up. Therefore, we see it as an upside to have the flexibility of
designing for hardware acceleration in different domains such as intrinsic, Instruction Set Extensionss (ISEs) or
outright support for specific devices such as FPGA, ASIC, etc. This KPI encapsulates the upside of hardware
acceleration support.

Definition: We define Dedicated Hardware Acceleration Support as the support for the use of dedicated
hardware of a specific library.
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How to measure: Given a specific library, Dedicated Hardware Acceleration Support is classified in these 2
levels:

* 0 - The library does not offer any out-of-the-box support for acceleration using Dedicated Hardware.

» 1 - The library does offer out-of-the-box support for acceleration using Dedicated Hardware by providing
the ability to use a custom backend for speeding-up the scheme operations.

Compatibility with time series data processing

Purpose: For specifically UC 2 mentioned in D4.1 section 7.3.2.1, there is a need for FHE of time-series data.
To assess the viability of the FHE library for this use-case, we should consider whether the library implements
schemes that can be used in conjunction with time series data. If a library does not support any schemes that
can be tied to time-series data, then the library would not be deemed suitable for UC 2, which means this KPI
is especially important with regard to this specific Use Case, and any future Use Cases involving time-series
data and FHE.

Definition: We define compatibility with time series data processing, the out-of-the-box support of a library
for processing time series, by supporting the appropriate FHE scheme. Since we assume that time series data
consists of integers, we look for support for BFV and BGV.

How to measure: Given a specific library, compatibility with time series data processing is classified in these
2 levels:

* 0 - The library does not offer any out-of-the-box support for BFV or BGV.
* 1 - The library does offer out-of-the-box support for BFV or BGV.

Compatibility with the ML models used

Purpose: Many of the Use Cases in SECURED rely on Machine Learning. Data that has been encrypted via
FHE has to be used as input for a model, which means that support for specifically ML-encrypted data would be
a good addition to the library. Additionally, ML models work mostly with floating point number representations,
which means that libraries that support this would be more beneficial for these Use Cases.

Definition: We define the “compatibility with ML” as the out-of-the-box support of a library for processing
ML models, by supporting the appropriate scheme. To not constrain ourselves on the input data, we define
the scheme to be used, either one that naturally supports floating-point operations such as CKKS or one that
provides an API that includes ML model integration via quantization.

How to measure: Given a specific library, compatibility with the ML models used is classified in these 2 levels:

* 0 - The library does not offer any out-of-the-box support for CKKS.

» 1 - The library does offer out-of-the-box support for CKKS.

Project Activity

Purpose: Libraries used by the SECURED project should be mature and well-maintained. This KPI tries to
encapsulate how well the library is currently being maintained. Although we cannot make any predictions about
the future, we believe that libraries that currently have a lot of activity will have a higher chance of being active
in the future than libraries that are no longer active anymore.

Definition: We define project activity based on the number of days between the date of the last commit to the
project and February 8, 2024.

How to measure: Given a specific library, project activity is classified in these 3 levels:
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» 2 - The library’s last commit was less than 12 months ago.
* 1-The library’s last commit was between 12 and 36 months ago.

* 0 - The library’s last commit was more than 36 months ago.

3.3.2 Results
Table 4 — Summary of HE libraries comparison using the selected KPls.
SEAL HEIlib OpenFHE Lattigo Concrete ConcreteML
SIMD 1 1 1 1 1
Parallelization 1 1 1 1 1
GPU 0 1 1
Dedicated HW 0 1 0 0
Time series 1 1 1 0 0
ML 1 1 1 0 1
Project Activity 1 2 2 2 2 2

Table 4 lists the comparison on all KPIs for the candidate libraries. Values were omitted where the property
assessed by the KPI was not explicitly reported in literature. We additionally do not place TFHE or TFHE-
rs in this table, as this is sufficiently covered in Concrete and ConcreteML with their TFHE basis. The table
showcases that most libraries are very close together in their properties, but we can read of that OpenFHE has
the largest amount of desirable KPI's we have set. In terms of GPU acceleration support, only Concrete and
ConcreteML showcase direct desirable properties with SIMD and parallelizability as added options, on top of
the ML support from ConcreteM. We therefore finally select OpenFHE and ConcreteML as prime candidates
for further investigation.

3.4 Benchmarking of Homomorphic Encryption Libraries

This subsection presents an in depth benchmarking of the OpenFHE and ConcreteML libraries. This analysis
will drive the acceleration phase that will be carried out in the upcoming months of the project. We begin this
evaluation defining the type of micro-benchmarks that will be used in the evaluation, we then report the result
obtained.

3.4.1 Micro-benchmarks type

In the library-specific evaluation, we use two main types of benchmarks. Both types of micro-benchmarks
measures execution time, but one aims at identify the bottlenecks within the functions of the libraries, the second
aims at identify the overhead caused by the addition of privacy preserving technologies to the computation.

More in details, the main purpose of the first type was to identify the functions in the libraries that cause the
largest overhead. This analysis is done to identify the most suitable candidates for acceleration. Practically,
we measure this by profiling the target libraries using the micro-benchmarks provided with the library them-
selves. Each of the library under analysis, in fact, provides a set of micro-benchmarks. We execute these
benchmarks on our platform and report the runtime measured for each micro-benchmark, i.e. for each function.
The measured time is the time needed for a certain function in the library to complete the execution of the given
micro-bench.

The main purpose of the second type of benchmark was to analyze the runtime overhead of HE on plaintext
processing. The set of benchmarks should be meaningful in practice and stand for a representative workload,
within the SECURED UCs and beyond. To generate these benchmarks, we started from the T2 benchmark
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suite, which was extended to also perform plaintext processing. The encrypted and the plain-text processing
have been then executed and the difference in execution time has been compared.

3.4.2 Results

In this subsubsection, we present initial measurements on the metrics that are associated with the above de-
scribed micro-benchmarks. We perform specific measurements separately for OpenFHE, ConcreteML and its
underlying library Concrete.

The experiments that were carried on in the next sections were executed on several platforms, configuration
details of which are summarized on Table 5.

Comp1 Comp2 Comp3 Comp4 Comp5
oS WSL Ubuntu 22.04 Ubuntu 20.04 Centos 8.5 Almalinux 8.7 Debian 10
Hardware Architecture x86_64 x86_64 x86_64 x86_64 x86_64
CPU op-mode(s) 32-bit, 64-bit 32-bit, 64-bit 32-bit, 64-bit 32-bit, 64-bit 32-bit, 64-bit
CPU(s) 8 12 48 40 256
11th Gen Intel® Intel® Xeon® Intel® Xeon® AMD EPYC
. 12th Gen Intel® . .
Model name Core™ i7-1165G7 . Silver 4214CPU  Silver 4210R CPU 7662 CPU
Core™ i7-12700
@ 2.80 GHz, @ 2.20 GHZ @ 2.40 GHz @ 2.0 GHz
CPU freq. (MHz) 2800 2100 2200 3200 2000
Installed memory (GB) 16 16 128 128 508

Table 5 — Computer platforms used in the following sections as platforms for the benchmarks

OpenFHE

To evaluate OpenFHE, we extracted selected macro-benchmarks from the T2 compiler [29]. These bench-
marks have been designed to exhaustively assess an HE library’s compatibility in a wide variety of domains.
These include ML operations (i.e. neural network), operations usually used in genomics (i.e. chi-squared), op-
erations used in information theory (i.e. Hamming distance, Manhattan distance etc) and other computationally
intensive applications (e.g. Fibonacci and matrix multiplication). The results of these benchmarks are displayed
on Table 6, where we can see the performance of the benchmarks when executed normally (in “plaintext”) and
when executed under Homomorphic Encryption with OpenFHE. The variants of the benchmarks can be seen
in row 2 and we split the OpenFHE performance according to the underlying scheme (BFV and CKKS) and the
domain that the data are represented. Specifically the BFV scheme is used in either integer domain (notated
as BFV(int)) or in binary domain (notated as BFV(bin)).

The configurations for these tests were based upon the PALISADE alternatives that were provided by the T2
compiler, which we converted to corresponding OpenFHE code. We made a custom configuration to the t2 com-
piler to be able to support compilation for OpenFHE (previously only PALISADE, an earlier version of OpenFHE,
was supported). The experiments were run 3 different platforms (Comp1, Comp3 and Comp5). We selected
these 3 platforms as representatives of different categories of machines. Comp1 is a commercial laptop with a
state of the art commercial CPU with 12 cores and limited amount of available memory (16 GB), Comp3 is a
server-grade machine with a server-grade CPU with 40 cores and larger amount of available memory (128 GB)
and finally Comp5 is a powerful server-grade machine equipped with 256 cores and significantly more available
memory. The benchmarks from Table 6 were run using the default build options of OpenFHE, meaning with
OpenMP multi-threading support on and with machine-specific optimizations off. We used the gcc and g++
compiler version 13.2.0.

The security level throughout these tests was set at 128-bit security, as provided by default in OpenFHE. To
make sure all T2 PALISADE equivalent benchmarks ran 128-bit security in OpenFHE, we removed the specific
Ring Dimension set by the PALISADE benchmark and we let OpenFHE decide the Ring Dimension based on
our security level. The Plaintext Modulus also needed to be changed to allow the 128-bit security, and was
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Plaintext Execution Time (s) Encrypted Execution Time (s)

Machine Comp1 Comp3 Comp5 Comp1 Comp3 Comp5
Benchmarks Mode BFV (int) BFV (bin) CKKS BFV(int) BFV(bin) CKKS BFV(int) BFV (bin) CKKS
Chi squared 4 %1070 15 x10~9 14 x10~9 0.045 0.113 0.12 0.222 0.104 0.213
LElE 4x4 168 x1079 252 x10~° 217 x10~° 1.04 0.471 0.911 1141 0.836 0.979
Multiplication

8x8 1215 x10° 1835 x10~% 1617 x10~9 3.683 4.366 8.043 9.071 6.775 7.659

16 x 16 9817 x10? 13929 x10~9 12723 x10~9  28.861 36721 62.972 72303  53.928 59.203
Batched Private
Information 4-bit 26.923 39.263 31.849
Retrieval

8-bit - - - - 98447 - - 101.155 87.105

64-bit 146 x109 201 x10~° 136 x10~? 0.007 0.032 0.017 0.009 0.015 0.009

128-bit 204 x1070 411 x109 272 x10~? 0.008 0.004 0.017 0.009 0.014 0.011

256-bit 583 x10™9 806 x10° 525 x10~° 0.005 0.003 0.026 0.009 0.014 0.011
S EEEED o 123 1079 175 x10-° 148 x10~° 0.385 0.521 1.015 1.328 0.868 1.001
Distance

128-bit 242 x109 341 x10° 288 x10° 0.839 - 1275 2,072 - 2412 1.729 - 2122
CRC 8-bit 175 x10=9 2,01 x10~°  0.68 x10~? 5161 75.347 64.916

32-bit 1.78 x10~° 2x107°  0.64 x10~? - - - - - -
Hamming Distance 4-bit - - 13 x107° 6.755 18.729 9.378 22.519 7.874 19.953

8-bit 22 %107 16216 - 17.862 - 16.009 -
Relational Manhattan —, 7x107° 22107 18 x10°" 267.328 201.878 156.658
Distance

8-bit 15 x10~9 35 %1079 31 %107° - 508.605 - 399.663 309.201
Fibonacci 20 26 x10~° 70 %1070 65 %10~  10.377 18.924 17.724

30 72 x10~° 103 x10~? 91 %107  10.727 19.366 18.149

40 75 x10~9 - 116 x107° - - - - - -
Neural Network 50 7511 x109 10483 x10~9 1070 x10~°  21.747 252657  30.323 299.124 25.11 246.784

100 1613.4 x10°° 2103 x10°° 2138 x10?  44.986 - 514449  60.972 - 628726  50.166 - 501.776

150 24622 x109 31526 x10° 3207 x10~°  66.953 769.189 91.59 890.668  74.844 733.678

Table 6 — Results of plaintext versus OpenFHE-protected execution from selected macro-benchmarks from T2 [29]. All results are expressed in seconds (s)
and benchmarks are run on three different machines: Comp1, Comp3 and Comp5

set at 65537). The value was chosen to be consistent with other benchmarks that needed a higher Plaintext
Modulus.

An interesting observation that was made while testing is that when the openMP multi-threading support is
enabled in OpenFHE, it automatically spawns as many threads as the available cores of the system. In the
case of Comp3 and Compb5, that is 128 and 256 respectively. We observed that when that many threads are
spawned and the underlying problem does not provide enough workload, which is the case for every benchmark
we are using the overhead of the creation and possibly the synchronization of these threads result in a much
slower execution time. For that reason and as a preliminary decision, we fixed the number of threads to a
lower number, which we selected to be 16. OpenFHE gives you the ability to control the number of openMP
threads spawned by setting the environmental variable OMP_NUM_THREADS to the desired number. All the
results in table 6 are reporting the execution time when OMP_NUM_THREADS is set to 16 or lower (to the
max system available cores if it is lower than 16). For the scope of this deliverable we did not delve deeper into
exploring the optimal selection of number of threads, but we see that there is value on fine-tuning this parameter,
on a per-application as well as a per-machine basis, as the speedup that can be obtained by parallelization
depends both on the workload provided by the application and on the machine’s characteristics. It should be
noted here, that the parallelization is offered by OpenFHE and it used when computing the underlying primitive
operations and not on the application level. For example, one could imagine that the matrix multiplication could
be parallelized at a per multiplication manner, but this is not the case on our benchmark. In this example, the
parallelization is used when computing each multiplication and multiple threads are spawned to compute this
single multiplication.

From the results in Table 6, we can see that linear transformations that are important for the medical focus of
SECURED can have higher execution times as we move to larger problems. The scaling factor with regard to
the dimension is high, which makes it a prime target for acceleration when working with medical imaging that
will require more pixels. It also indicates a preference on using CKKS if available, as this performs better on
all chosen benchmarks except the neural network inference. The overall communication cost of running FHE
compared to plaintext is large, but the execution times for most of the small applications are reasonable.

OpenFHE provides a series of benchmarks that are used to evaluate the execution time of the primitive opera-
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Standard Build Built with Intel HEXL backend
Benchmark Time (us) CPU (us) Iterations Time (us) CPU (us) Iterations Speedup
NTTTransform1024 15.1 15.1 46192 7.74 7.73 90582 96.10%
INTTTransform1024 14.7 14.7 47352 8.49 8.49 82463 74.15%
NTTTransform4096 71.9 71.9 9738 36 36 19346 98.67%
INTT Transform4096 69.4 69.4 10085 39.4 39.4 17775 76.25%
NTTTransforminPlace1024 14.8 14.8 46880 7.72 7.72 90550 93.15%
INTT TransformInPlace1024 14.5 14.5 48154 8.4 8.4 83400 73.19%
NTTTransforminPlace4096 70.7 70.7 9893 36 36 19456 96.66%
INTT TransformInPlace4096 68.6 68.6 10187 38.8 38.8 18043 77.12%
BFVrns_KeyGen 3672 3671 191 3487 3486 203 6.28%
BFVrns_MultKeyGen 6118 6117 114 5935 5933 117 2.63%
BFVrns_EvalAtindexKeyGen 6142 6141 113 5911 5909 118 4.42%
BFVrns_Encryption 4860 4859 144 4052 4051 172 19.44%
BFVrns_Decryption 2623 2124 413 2722 2638 490 18.64%
BFVrns_Add 95.4 95.3 30001 137 137 4949  -83.50%
BFVrns_AddInPlace 15.7 15.7 44588 10.8 10.8 61942 38.92%
BFVrns_MultNoRelin 15984 13015 59 23832 12806 52  -11.86%
BFVrns_MultRelin 20554 19779 44 22592 11330 60 36.36%
BFVrns_EvalAtindex 4827 2413 293 2571 2028 366 24.91%
CKKSrns_KeyGen 5106 4980 105 5173 5171 104 -0.95%
CKKSrns_MultKeyGen 8385 8383 80 7984 7982 87 8.75%
CKKSrns_EvalAtindexKeyGen 8238 8236 85 7958 7957 86 1.18%
CKKSrns_Encryption 4295 4294 162 3710 3709 185 14.20%
CKKSrns_Decryption 226 226 3091 135 135 5169 67.23%
CKKSrns_Add 101 101 9015 98.8 98.8 7092  -21.33%
CKKSrns_AddInPlace 64.9 64.9 10730 65.5 65.5 10757 0.25%
CKKSrns_MultNoRelin 214 214 3267 211 211 3282 0.46%
CKKSrns_MultRelin 8985 6906 102 9686 9682 128 25.49%
CKKSrns_Relin 9733 6445 117 8988 8984 82 -29.91%
CKKSrns_RelininPlace 8906 6201 99 6533 6530 100 1.01%
CKKSrns_Rescale 812 811 688 503 503 1109 61.19%
CKKSrns_RescalelnPlace 726 726 962 454 454 1537 59.77%
CKKSrns_EvalAtindex 12108 6052 108 6329 6326 149 37.96%
BGVrns_KeyGen 5215 5113 104 4884 4702 111 6.73%
BGVrns_MultKeyGen 8642 8641 81 7948 7947 86 6.17%
BGVrns_EvalAtindexKeyGen 8387 8385 83 7866 7864 89 7.23%
BGVrns_Encryption 4563 4562 152 3810 3809 182 19.74%
BGVrns_Decryption 448 448 1595 376 376 1863 16.80%
BGVrns_Add 115 115 7239 99.3 99.2 7091 -2.04%
BGVrns_AddInPlace 120 120 6825 48.6 48.6 14826 117.23%
BGVrns_MultNoRelin 288 288 2237 166 166 4240 89.54%
BGVrns_MultRelin 9018 8782 124 7995 7987 126 1.61%
BGVrns_Relin 7035 7032 95 8347 8344 87 -8.42%
BGVrns_RelinInPlace 6794 6791 98 7018 7015 78  -20.41%
BGVrns_ModSwitch 846 845 670 486 486 1424  112.54%
BGVrns_ModSwitchInPlace 831 831 684 491 491 1450 111.99%
BGVrns_EvalAtindex 6246 6243 114 6864 6860 100 -12.28%

Table 7 — Runtime of micro-benchmarks of OpenFHE when built without and with the Intel HEXL backend
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tions of the schemes that OpenFHE supports (BFV, CKKS and BGV) when used in different domains (integer
or binary) and on the execution time of some underlying primitives that are being used by these schemes (e.g
NTT domain operations). Since these benchmarks match our definition of micro-benchmarks, we run them too.
The results of these micro-benchmarks can be found in Table 7. For these benchmarks we selected as our tar-
get platform only Comp5. The standard OpenFHE micro-benchmarks were built with the default built options,
meaning with openMP multi-threading support on and with machine-specific optimizations off. We used clang
and clang-++ version 13.0.1-6 deb10u4.

Additionally, OpenFHE provides support for specialized hardware backends, meaning that one can build the
library and link it with a specialized backend that provides optimized implementations for the primitives that
OpenFHE uses. Intel HEXL is a library that accelerates modular arithmetic operations used in homomorphic
encryption, especially taking advantage of vector instructions on modern CPUs and OpenFHE offer support
on building it as a backend. We followed the instructions given in the OpenFHE documentation on HEXL [30]
and we benchmarked the performance specifically on Comp5. The results for the Intel HEXL compared to a
baseline build can be seen in the 2nd and 3rd column of Table 7. The default build option were used, meaning
with openMP multi-threading support on and with machine-specific optimizations off and compiler clang and
clang-++ version 13.0.1-6 deb10u4.

ConcreteML

To evaluate ConcreteML library we designed a relative simple model, structured as a binary classification Multi-
Layer Perceptron, to process ECG segments for arrhythmia detection. This relates to UC-2. The model proves
highly effective in identifying arrhythmic patterns within ECG data, achieving an accuracy of 97.53%.

Dataset: The dataset employed to develop an arrhythmia detection model was derived from MIT-BIH Arrhyth-
mia database [31]. This dataset comprises 48 ECG recordings, each lasting 30 minutes and captured from
two channels. These recordings were collected from 47 individuals and were analyzed by the BIH Arrhythmia
Laboratory between 1975 and 1979. The MIT-BIH Arrhythmia database is a subset of a larger collection of
4,000 ambulatory ECG recordings, each with a duration of 24 hours, gathered from a diverse group of patients
at Boston’s Beth Israel Hospital. This patient group consisted of approximately 60% inpatients and 40% outpa-
tients. To ensure the inclusion of rare, yet clinically significant arrhythmias that might be overlooked in a small,
random sample, 25 recordings were deliberately selected. Additionally, 23 recordings were chosen at random
from the same collection to ensure a comprehensive representation of the patient demographic and the spec-
trum of cardiac activities encountered in clinical settings. The recordings were digitized at a sampling rate of
360 Hz per channel, with each analog value quantized to 11 bits resolution across a 10 mV range. Annotations
for each recording were provided by at least two cardiologists, ensuring the accuracy and reliability of the data
for arrhythmia detection research.

Preprocessing: The preprocessing and feature extraction stages are pivotal steps that follow the collection
of samples. This is due to the fact that continuous raw data often contain redundant information which, without
explicit utilization, does not contribute directly to building a compact and efficient model for arrhythmia detection.
The detailed methodologies for data extraction and preprocessing are elaborated by Sakib et al. [32]. Initially,
the data undergo a crucial filtering process to remove noise. The first step involves applying a Butterworth high-
pass filter with a cutoff frequency of 1Hz to eliminate the DC component and mitigate baseline fluctuations.
Following this, a Butterworth band-rejectfilter is employed to minimize the 60 Hz AC interference. Lastly, to
remove high-frequency disturbances, a Butterworth low-pass filter with a cutoff frequency of 25 Hz is utilized. In
the MIT-BIH arrhythmia dataset, which includes more than 15 distinct heartbeat annotations, these are classified
into five main categories: N (Normal beat), S (Supraventricular ectopic beat), V (Ventricular ectopic beat), F
(Fusion beat), and Q (Unknown beat). Since a vast majority of the heartbeats are categorized as N (comprising
almost 90%), the rest are grouped into class A (abnormal beat) to convert the task into a binary classification
problem. To ensure dataset balance, the N class was downsampled to equal the number of beats in class A.
The dataset utilized for the development of the model does not comprise raw data. Instead, it features a set of
derived characteristics, detailed in Table 8. These features are calculated based on the R-peaks annotated for
each heartbeat in the original MIT-BIH dataset.

23



SECURED D3.1 Scalable Secure Multiparty Computation, Federated Learning and Unbiased Al

Feature Group Feature Name
RR Intervals Pre-RR

RR Intervals Post-RR
Heartbeat Intervals features PQ Interval
Heartbeat Intervals features QT Interval
Heartbeat Intervals features ST Interval
Heartbeat Intervals features QRS Duration

Heart beats amplitude features P peak
Heart beats amplitude features Q peak
Heart beats amplitude features R peak
Heart beats amplitude features S peak
Heart beats amplitude features T peak

Morphology Features Morphology Feature 1
Morphology Features Morphology Feature 2
Morphology Features Morphology Feature 3
Morphology Features Morphology Feature 4
Morphology Features Morphology Feature 5

Table 8 — Features.

The Pre-RR and Post-RR intervals represent the time duration from the previous and next R peak, measured
in milliseconds, respectively. The P, Q, R, and T peaks correspond to the amplitudes of each data point in
the ECG recording, measured in millivolts. The PQ, QT, ST, and QRS complex intervals denote the duration
between the corresponding peaks. Additionally, the QRS morphology features consist of five samples within
the QRS complex.

Concluded dataset: The final dataset comprises 24,148 samples, each containing 32 features (16 features
per channel). Each sample is labeled as either N (normal, 0) or A (abnormal, 1). After feature extraction, the
data standardization technique was employed to scale the data into a specific range. Standardization is applied
to introduce a Gaussian distribution with unit standard deviation to the features.

Model design: The selection criteria for the ideal model to identify arrhythmias in heartbeats focus on two key
aspects, performance and size. For performance, the model needs to display high accuracy and effectively
handle new, unseen data. In terms of size, the model’s compactness is crucial, enabling its deployment on
edge devices like FPGAs for efficient, real-time processing. These factors were taken into account to ensure the
chosen model is reliable, accurate, and suitable for deployment in resource-constrained environments. Based
on the these considerations and in accordance with the dataset format, we employed a compact architecture
using a small MLP, more specific a Dense Neural Network. The operation of the dense layer is described by
the formula in Eq. 1. The output vector y of the dense layer is computed using the following equation:

y=0c(W -x+Db) (1)

where x represents the input vector of dimension n, W is the weight matrix of dimension m x n, b is the bias
vector of dimension m, and ¢ denotes the activation function.

Architecture: The architecture of the DNN depicted in Figure 3 consists of five fully connected layers. The
first and second layers each have 64 neurons, followed by a third layer with 32 neurons, a fourth layer with
16 neurons, and concluding with a final layer that has a single neuron. The overall model contains 8,897
parameters. In the first four layers, the RelLU activation function was employed, while the sigmoid activation
function was used in the final layer, as it is a binary classification problem. Dropout layers of 20% were inserted
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(None,

dropout (Dropout) (None,
dense 1 (Dense) (None,
dropout_1 (Dropout) (None, 64)
dense_2 (Dense) (None,
dropout_2 (Dropout) (None,
dense_3 (Dense) (None,
dense 4 (Dense) (None,

Total params: 8,897
Trainable params: 8,897
Non-trainable params: ©

Figure 3 — DNN structure.

after each of the first three layers to mitigate overfitting. A dropout layer randomly sets a percentage of the
outputs of the previous layer to zero during training. Additionally, the Adam optimizer was selected as the
optimization algorithm to minimize the loss function. The learning rate was set to 0.001, and the batch size was
chosen at 32 samples based on experimentation.
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Figure 4 — Training and Validation Phases.

Training/Evaluation: The training and validation phases are depicted in Figure 4. Throughout these phases,
the number of epochs could extend to a maximum of 100. However, if there was no improvement in validation
accuracy after 20 consecutive epochs, the training process was halted, and the best model identified up to that
point was selected. Various performance metrics were employed to provide a comprehensive evaluation of the
developed model for arrhythmia detection. Each metric offers a unique perspective on the assessment of the
neural network’s effectiveness. The outcomes of these evaluations are summarized in Table 9, proving the
model’s performance

Results: The DNN demonstrates a high level of accuracy, achieving 97.56%. Accuracy is a measure that calcu-
lates the proportion of correctly predicted instances out of the total instances, providing a general assessment
of the model’'s performance. Furthermore, the model exhibits a precision of 97.79%. Precision is the ratio of
true positive predictions to the total number of positive predictions made by the model, indicating the reliability
of the model’s positive class predictions. This metric is crucial, especially when the implications of false posi-
tive errors are significant. Recall, or Sensitivity, is another vital performance metric, with the model achieving
97.32%. Recall measures the proportion of true positive predictions out of all actual positive instances within
the dataset, assessing the model’s ability to identify positive instances accurately. This metric is particularly
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Metric Result(%)
Accuracy 97.56
Precision 97.79
Recall 97.32
F1 Score 97.55

Table 9 — Performance metrics of the NN.

important in medical contexts, such as distinguishing arrhythmic heartbeats from normal ones, where failing
to detect a positive instance (a false negative) could have severe consequences. Lastly, the F1 score, which
is the harmonic mean of precision and recall, serves as a balance between the two, emphasizing their equal
significance. It is especially useful in situations with an uneven class distribution. The DNN achieved an F1
score of 97.55%, indicating a strong balance between precision and recall in its predictions.

FHE implementation: In order to run the model in FHE we quantized our model and then produced the
FHE equivalent, based on the quantized one (for more details on Post-Training Quantization (PTQ), see Sec-
tion 3.2.2). We calculated the accuracy of these models for different quantization-bits. ConcreteML provides
a quantization function, in order to translate the initial model to a quantized one. It allows quantization of the
model up to 8-bits. In our case, the maximum number of allowed quantization is 7-bits, as the library could
not handle 8-bit precision of some NP-library functions. In Table 10 we have a comparison between the pro-
duced quantized model and the corresponding FHE equivalent, by using ConcreteML library running on the
same dataset used on our initial non-quantized model. We can see that the maximum accuracy we achieve is
94.2% for 7 quantization-bits, which is close to the reference accuracy of the non-quantized model but not as
good. Also, we observe that the FHE execution times are high in comparison to the execution time of the MLP
quantized or non-quantized model, in order to achieve accuracy relative to the reference.

Quantization Execution time Execution time Quantization Final

bits Quantized Model (s) FHE Model (s) Time (s) Accuracy
7 8x 1076 524 83 94.2%

6 7x 1076 447 36 92.3%

5 1x107° 259 22 82.6%

4 9x 1076 285 18 67.4%

3 9x 1076 22 17 58.7%

2 9x 1076 0.8 17 48.6%

Table 10 — Execution time comparison between the MLP model and the FHE-MLP model. Reference accuracy of non-quantized model is 97.53% and
execution time is 10~™* sec. 64-bit hardware architecture and Intel® Core™ i7-6700HQ CPU @ 2.60GHz x 8.

Concrete

The potential of the Concrete (concrete-python) [23] library to be used as a means of the basic software tool-
set for the implementation of homomorphically encrypted operations involved in signal-and image—processing,
hence relating to UC-1, is explored in the following text.

The benchmarks tested using Concrete are the following:

+ Matrix-matrix multiplication. This is very often the dominant basic operation in signal—- and image— pro-
cessing algorithms. The cases where both matrices are encrypted, or where one of the matrices only is
encrypted and the other is in plaintext (clear or not encrypted), have been examined;

+ Basic operations on images: Operations on pixels (Colour Inversion), Resizing, Interpolation and Regrid-
ding.
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The basic goal is to quantify the impact of the size of the operands, namely, the sizes of the matrices and the
word-length of their elements, and the sizes of the images and the word-length required to express pixels, on
the performance of concrete.

Table 11 reports the performances obtained for several cases of matrix-matrix multiplication, both for the
encrypted-by-encrypted and the clear-by-encrypted cases. The notation MM_XY_(¢xd)x(ex f)_b denotes the
multiplication of two matrices of sizes (¢xd) and (ex f), respectively, while b is the number of bits required to
represent the integer elements. In this notation, the values of X, Y can be either C or E, denoting that the corre-
sponding matrix is clear (C) or encrypted (E). For example, MM_EE_(16x16) x (16x16)_4 performs HE matrix
multiplication of two encrypted matrices of dimensions 16x 16, with elements of 4 bits (0 — 15). OL means Off-
Limits, i.e., operation cannot be executed on the specific system, due to memory limitations. Maximum memory
usage includes system memory usage.

The benchmark programs were developed, relying on a number of operations which belong into the category of
operations supported by Concrete. Such operations include the highly optimized Numpy function numpy . matmul
for matrix-by-matrix multiplication, or the property nd.array.shape which returns the dimensions of an array.
In addition, the Concrete compiler is also designed to offer highly optimized performances of the Encrypt, Run,
and Decrypt functions in the context of the corresponding compatible operations and structures in the HE plane.

Operation Comp1 Comp2 Comp3 Comp4 Comp5
Exec. Exec. Max. Exec. Max. Exec. Max. Exec.
time time mem time mem time mem time
(s) (s) (GB) (s) (GB) (s) (GB) (s)

MM_EE_(2x2)x(2x2)_2 1.454 0.959  1.25 0.634 0.48 30 0.59

MM_EE_(2x2)x(2x2)_3 14.862 1.438 1.34 0.865 0.81 30 0.80

MM_EE_(2x2)x(2x2)_4 oL 1.603  1.37 0.869 1.03 30 0.855

MM_EE_(2x2)x(2x2)_4_Enc 0.003 0.004 0.004 0.005

MM_EE_(2x2)x(2x2)_4 Run 0.589 0.538 0.479 0.30

MM_EE_(2x2)x(2x2)_4_Dec 0.002 0.015 0.002 0.002

MM_EE_(2x2)x(2x2)_8 oL 95.029 113.86 50 45.8

MM_EE_(8x8)x(8x8)_4 34.669 7.622 42.70 9.921 31 5.313

MM_EE_(8x8)x(8x8)_6 269.353  4.77 99.072 46.99 79.049 84.441

MM_EE_(16x16)x (16x16)_2 50.711  1.25 5.647 9.727 31 1.96

MM_EE_(16x16)x (16x16)_3 110.618 16.732  3.46 27.899 31.51  16.648

MM_EE_(16x16)x(16x16)_3_Key 0.557 0.059 0.412

MM_EE_(16x16)x(16x16)_3_Enc 0.058 0.059 0.066 0.047

MM_EE_(16x16)x(16x16)_3_Run 108.708 16.009 26.978 16.454

MM_EE_(16x16)x(16x16)_3_Dec 0.022 0.019 0.022 0.012

MM_EE_(16x16)x(16x16)_4 261.578 38.943 3.91 58.602 38.102

MM_EE_(16x16)x(16x16)_6 2521.781 759.477  7.79 501.904 34.5 281.207

MM_EE_(16x16)x(16x16)_T7 6500.225 4368.284 2909.258 886.094

MM_EE_(16x16)x(16x16)_8 27266.867 97 10346.090 97 5868.156

MM_CE_(16x16)x(16x16)_8 0.268 14.11 0.239 0.248

MM_CE_ (256 x256) x (256 x256)_8 32.511 29.21 52.601 38.61 28.55

MM_EE_(1x8)x(8x1)_ 2.240  1.32 1.370 14.36 1.597 30 1.160

MM_EE_(1x8)x(8x1)_6 19.152  3.10 10.054 16.34 10.832  30.5 7.425

MM_EE_(1x8)x(8x1)_ oL 203.584 42.18 239.522  58.81 95.895

Table 11 — HE matrix multiplications, (concrete)

Table 12 reports the performances of some basic operations on images, for 2—D images of typical sizes. More
specifically, color inversion, resizing, interpolation and regridding are given as example cases in the table.
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Operation Execution Time (s)
plaintext HE

Input Output  Bits

image image per Comp2 Comp3 Comp5 Comp2 Comp3 Comp5

size size pixel
ImageColourlnversion 100x100 100x100 8 1.268x103 0.146x10~3 0.110x1073 2.152 1.178 0.723
DownSize (1 : 2) 100100  50x50 8 1.417x1073  0.806x10~3  0.598x10=%  2.427 1.361 1.087
Interplmage 100x100  199x199 8 10.588x1073  4.707x107%  4.596x1073 9.97 4.791 3.452
regrid_x_ax_512 512x512  512x512 8 591x10~3 427.39x1072  874.93x10~% 133.468 85.782  77.202
regrid_x_ax_512div4 256x256 256 X256 8 24.777x1073 36.6x1073 38.262x1073  25.329 12.032 10.828

Table 12 — Basic Image Operations

Original Image:(512, 512) HE Regridded Image:(512, 512) Difference:(512, 512)

Figure 5 — HE Regridded 512 x 512 Image

Execution time is given for the plaintext execution and for the HE execution.

The regridding procedure required in UC-1 is initially expressed as a translation of a given image in a 2D space
by a vector comprising not necessarily integer elements. Therefore, new pixel values need to be computed, at
non-integer grid points.

If regridding along one axis is assumed, this translation operation, which includes computation of new pixel
values at the target grid points, can be expressed as a transformation

Y = CX,

i.e., a matrix multiplication in which the operand C is a suitably constructed transformation matrix and X is the
original image to be translated. Matrix C does not depend on the image data, but only on the initial and target
grid. In order to perform the operation in concrete, C' is mapped to a fixed-point representation, subsequently
expressed in integer format. The resolution achieved by the translation, is defined by the number of the bits allo-
cated for the representation of the integers in the modified C, in this way affecting the complexity of the operation.
The potential of breaking the image matrix to a set of smaller matrices, offers a trade-off parameter towards
obtaining smaller execution times. This can be seen in the last two rows of Table 12, where regrid_x_ax_512
corresponds to the regridding of a 512 x 512 image as a unit (Fig. 5), while regrid_x_ax_512div4 corresponds
to the regridding of each of four partitions of the same image in parallel.

Discussion

Concrete implements a variant of TFHE and has been developed by zama. Concrete-python is user-friendly; the
“programmable bootstrapping” feature of the framework offers a useful alternative option to overcome certain
implementation difficulties in HE processing, such as the accumulation of errors after successive multiplica-
tions or the implementation of operations other than addition and multiplication, with the use of look-up tables.
However, Concrete has the disadvantage of small precision of the encoded data; 16 bits is reported as the
upper limit. To enlighten on the information in Table4 about Concrete, the following hold: Regarding hardware
acceleration features, in 2022 zama announced their intention to develop FH accelerators, including FPGAs,
expected in 2024 (https://www.zama.ai/post/introducing-the-concrete-framework). Furthermore, ConcreteML
has evolved as a Privacy preserving ML framework built on top of Concrete.
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Based on the experiments performed on the aforementioned computers, a number of conclusions regarding
Concrete HE matrix operations are derived, and are described in the following. When both operands are en-
crypted (i.e., Encrypted x Encrypted) the computational load of the Concrete execution becomes very heavy,
in terms of required computation and memory resources leading to excessively long execution times compared
to plaintext counterparts.

The word-length of the elements of the matrices in the plaintext field, is the most critical parameter that defines
the execution time and required resources of the HE operation on a specific computer. In accordance with
Concrete documentation, 16 bits has been found to be the limit; therefore, in the available computers, only
operations which result in a maximum of 16-bit products of the elements can be performed (i.e., 8 x 8, 9 x 7).
It was observed that the larger the memory of the computer which is used for the processing, the higher in
the range 2 to 16 bits, the performance can go. Also, as the number of bits rises, the execution time rises
exponentially. Figure 6 depicts the impact of the number of bits of the elements of the matrices being multiplied,
for a 16 x 16 multiplication in Concrete.

Execution time of MM _EE_(16x16Jx(16x16]_b on Compa, ir Emecution time of MM _EE_{16:06)x{16:16)_b on Compd, in Execution time of MM _EE_[16x1E]x[16x16) b on Compd, ir
e i

cancrete

.......

.....

] s 5 3 7 B 5 o 1 2 3 4 5 [ 7 8

Mumber of bits of matrices’ elements Nurnbier af bits of matrices' slements Numiber of bits of matrices’ elements

Figure 6 — Execution time (in seconds) of the operation MM_EE_(16x16)x (16 x16)_b on various computers, as a function of the number of bits of the
elements of the matrix operands.

As the dimensions of the matrices rise, execution time also rises exponentially. Figure 7 illustrates three sep-
arate plots of the execution times achieved on each one of three different computers, respectively, for 4-bit
element matrix multiplications of dimensions from 2 x 2 to 16 x 16. Testing reached a limit of matrices with
16 rows/columns. Because matrix multiplication is a dense operation which can benefit by tight pipe-lining, it
was obvious from the tests that multiple cores and parallel threads greatly improve the execution time. For the
runs on Comp2 and Comp3, all cores of the system were 100% active for the largest portion of the execution
(Figure 8). However, in the run on Comp4, which is characterized by a higher processor frequency, for certain
cases the assignment scheme resulted in a faster execution time, via smaller effort (utilization) of the cores.

MM_EE_AxB_4
300
250 Ch_ar‘t Area_.
200
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100

Execution time (s)
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n: number of rows/columns of matrices A and B
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Figure 7 — Execution time (in seconds) of the operation of HE matrix multiplication in Concrete, for matrices with 4-bit elements, as a function of the
dimensions of the matrices. Test performed on three different computers are shown.

When one of the operands only is encrypted and the other is clear, operations become feasible and manageable;
matrices of dimensions of up to 512 x 512 were used in the experiments. Exploitation of the parallelism within
the Concrete HE operations and mapping on parallel computer systems (multiple cores, parallel threads), and
on massively parallel hardware is expected to further decrease execution time.
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From linear algebra it is well known that many matrix operation algorithms, such as matrix multiplication, can be
realized by schemes which use partitions of the matrices. If such an option exists, when encrypting the data, it
seems that the execution time can be improved dramatically.

A serious issue to consider when it comes to evaluating a HE operation with Concrete, is the size of the input set.
The input set must be carefully constructed so that it is large enough to avoid error in result, yet not excessively
large, to avoid unnecessary memory and delay, and it must provide sufficient information to model input sample
distribution.

= Processes Resources File Systems = o x

CPU History

1600 seconds 3000 2400 1800

Figure 8 — CPU history for MM_EE_(16x16) x (16 x 16)_7, by gnome-system-monitor.

Finally, regarding the security level: The concrete-rust main programs on the lower level of the compiler are
reported to use A = 128 as the default level of security. The Lattice Estimator [33] has been used to define
parameters for security. However, the parameter sets for the Concrete HE executions performed during the
testings presented herein, don’'t always seem to meet this standard.

Figure 9 shows a print-out of the show_statistics configuration option available in Concrete, to enlighten on the
data sizes involved.

statistics

s1ze of_keyswitch_ke
s1ze _of_inputs: 17867
s1ze of out

programmable bootstrap count: ©
ey switch_count: 0
packing key switch count: @
lear addition count: @
ncrypted_addition_count: 134217728
ncrypted_addition_count_per_parameter:
LweSecretKeyParam(dimension=851): 134217728

lear multiplication count:
lear multiplication count per parameter: {
LweSecretKeyParam(dumenson=851): 134217728

ncrypted_negation_count: 0

Figure 9 — The Concrete show_statistics = True print-out.

3.5 Conclusions

This section presents an overview of work undertaken up to the point of this deliverable on SMPC and HE.
It discusses these technologies, with a particular focus on encrypted ML inference and summarizes the main
features of the selected libraries.

Further, as starting point for accelerations, we concentrated on libraries implementing HE, and we compared
them at high level, defining and using a number of KPIs, and at low level using a number of micro-benchmarks
that allowed us to identify the bottlenecks within the components of the libraries and the overhead caused by
the encrypted computation. These results will drive the acceleration task that will be carried out in the following
months of the SECURED project.
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4 Federated Learning

Federated Learning (FL) [34] is a Machine Learning approach that enables training models across multiple
decentralized devices or servers containing data, without exchanging that data directly. In traditional Machine
Learning, data is typically collected, centralized, and then used to train a model. However, in federated learning,
the model is sent to where the data resides, allowing training to happen on the devices or servers holding the
data.

In more detail, in every training round (i.e., epoch) data owners (i.e., clients) train a common model locally and
share the corresponding model updates (i.e., gradients) which are aggregated into a single global model for the
following round. The process is aided by a trusted server (i.e., aggregator) as illustrated in Figure 10.

4.1 Types of Federated Learning

There are various Federated Learning (FL) [35] systems (detailed in D4.1), tackling different scenarios. The two
most notable directions are Vertical or Horizontal, and Cross-silo or Cross-device. The first angle is concerned
with the feature space of the underlying datasets, the second depends on the number and nature of clients.

+ Vertical/Horizontal: Client datasets in Vertical setting have different feature space, while in Horizontal
setting, the datasets have the same feature space across all clients. For example, the clients know
different information about the same patients (e.g., one client knows the patients’ cholesterol levels, while
another knows the patients’ blood sugar levels), or the same information about different patients (e.g., the
clients know the platelets counts of different patients), respectively.

+ Cross-Silo/Cross-Device: the former refers to the case when the number of clients is limited, but they are
reliable, controlling significant computational power and sophisticated technical capabilities. The latter
encompass scenarios with a virtually unlimited number of clients, but with limited computational resources
and small datasets. For example, collaboration between a few hospitals with appropriate resources or
between millions of mobile devices with limited battery life and bandwidth.

A high-level description of the Federated Learning protocol is provided below.

1. The aggregator server initializes the model and determines the hyperparameters.

2. In order to converge the model, the following are necessary:
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Figure 10 — lllustration of Federated Learning. Source: Enhancing Data Security: Unleashing the Power of Federated Learning, by Marouane AOUFI
(https://www.linkedin.com/pulse/enhancing-data-security-unleashing-power-federated-learning-aoufi/)
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(a) The aggregator broadcasts the model to some clients.
(b) Those clients train that model on their local dataset and share the result with the aggregator.

(c) The aggregator aggregates the received model updates into the new global model.

3. The final model is broadcasted to all participating clients.

Federated Learning, with its distributed and collaborative nature, brings forth several privacy and security con-
cerns that need to be carefully addressed. These concerns arise due to the decentralized processing of sen-
sitive data and the potential vulnerabilities associated with sharing models and aggregating information across
multiple participants. Understanding and mitigating these concerns is crucial for ensuring the privacy and se-
curity of Federated Learning systems [36].

4.2 Selected Frameworks

In recent years, various efforts, both open-source and commercial, have aimed to incorporate Federated Learn-
ing (FL) technology into diverse sectors, including healthcare and other industries. Notable frameworks in this
space include TensorFlow Federated, Nvidia Flare, PySyft, FedML, FATE, Flower, OpenFL, Fed-BioMed, IBM
Federated Learning, HP Swarm Learning, FederatedScope, FLUTE, and more. Among these, Flower and
Nvidia Flare stand out as the most widespread [37] [38]. Therefore, we systematically compare Flower and
Nvidia Flare in the following sections.

Nvidia Flare

Nvidia Flare [39] (NVIDIA Federated Learning Application Runtime Environment) is a domain-agnostic, open-
source, and extensible SDK for Federated Learning. It empowers researchers and data scientists to adapt their
existing ML/DL workflows to a federated paradigm and enables platform developers to build a secure, privacy-
preserving solution for distributed multi-party collaboration. The framework offers both simulated and real-world
Federated Learning capabilities.

« Security/Privacy: Flare addresses security and privacy through a range of privacy-preserving algorithms.
These include techniques such as excluding variables, truncating weights by percentile, applying sparse
vector methods, utilizing Homomorphic Encryption. Flare ensures the identities of communicating peers
with the use of mutual Transport Layer Security (TLS).

» Documentation: The quality of the documentation is one of the areas where Nvidia Flare excels the most
among other software solutions. The documentation comprises key functionalities, example applications,
and separate guides for regular usage, along with programming guides for developers interested in build-
ing experiments using the available tools. Notably, it provides more example codes than Flower.

» User-Friendly Interface: Flare offers an end-to-end operational environment for various user roles. It
features a comprehensive provisioning system that generates security credentials for secure communica-
tions, facilitating the secure deployment of Federated Learning (FL) applications in real-world scenarios.
Additionally, Flare provides an FL Simulator for running proof-of-concept studies locally. In production
mode, users can conduct FL studies by submitting jobs through admin commands, either on a Notebook
or using the Flare Console — an interactive command tool. Through various commands, users can initiate
and halt specific clients or the entire system, submit new jobs, check job statuses, clone existing jobs to
create new ones, and perform other essential tasks. Flare implements a role-based user authorization
system, dictating what actions a user can or cannot perform

» Compatibility: The SDK is a lightweight, flexible, and scalable Python package, and allows using any
training libraries (PyTorch, TensorFlow, XGBoost, or even NumPy) and apply them in real-world FL set-
tings.
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» Learning curve: Nvidia Flare offers a shallower learning curve compared to Flower. Users have reported
that it requires more time to become familiar with Flare, and the installation process is also considered
more cumbersome [37] [38].

» Customization: Flare supports several server aggregation strategies including Scaffold, FedProx, Fed
Average, and FedOpt. Flare allows users to experiment with different algorithms and data splits using
different levels of heterogeneity based on a Dirichlet sampling strategy.

« Community Support: Flare is actively maintained and developed by Nvidia. However, the general research
community seems to favor Flower over Flare probably due to is faster learning time and simplicity.

 Scalability: Flare is scalable to tens of clients [39], or even more, which is sufficient for a typical cross-
silo federated learning scenario in SECURED. However, there are no public evaluations for hundreds of
clients.

Flower

Flower [40] is an open-source Python library designed for Federated Learning. It offers a flexible and extensible
architecture for constructing Federated Learning systems, supporting various Deep Learning frameworks such
as TensorFlow, PyTorch and Keras. Flower simplifies the development and coordination of Federated Learning
systems by providing high-level abstractions and tools for client-server communication, model aggregation, and
coordination among participating clients.

« Security/Privacy: Flower supports secure aggregation and differential privacy (DP-FedAvg). Clients can
establish SSL connection to the server just like in Flare.

» Documentation: The Flower documentation is extensive and exhibits a smooth transition from simpler
concepts to more complex ones. It is well-organized and excels at assisting users of various expertise
levels in onboarding to Flower. Moreover, a comprehensive API reference is available online.

» User-Friendly Interface: Flower provides a user-friendly interface that streamlines the setup and configu-
ration of Federated Learning (FL) experiments.

« Compatibility: It is framework-agnostic and supports a wide range of Machine Learning frameworks (Py-
Torch, TensorFlow, Hugging Face Transformers, PyTorch Lightning, MXNet, scikit-learn, JAX, TFLite,
fastai, Pandas and Numpy).

» Learning curve: Flower has a steeper learning curve compared to Flare. It provides a complete setup
guide with well-explained tutorials and examples. The framework is simple and easy to extend with new
server-side and client-side functionalities.

 Customization: Flower supports several aggregation strategies including FedAvg, FedOpt, FedProx, FedAda-
grad, FedAdam and FedYogi. Federated Averaging is the default aggregation strategy. Custom aggre-
gation strategies can also be implemented for specific use cases. The client AP allows the developer to
customize how each client in the federated network behaves.

« Community Support. Flower has active developer communities and several research papers in FL. They
publish their code that can be seamlessly integrated into Flower.

« Scalability: Flower is scalable to several hundred clients, significantly more than in typical cross-silo Fed-
erated Learning settings used in SECURED.

Pybiscus [41], built on top of Flower, is a simple tool to perform Federated Learning on various models and
datasets. It aims at automating as much as possible the FL pipeline, and allows adding virtually any kind of
dataset and model.
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Verdict

In summary, Flower is easier to start working with and adapts to a wide range of regular Machine Learning
workflows. It offers several built-in security and privacy features, including Differential Privacy and Secure Ag-
gregation. Flower is also easier to extend with new and customized functionalities, though it is less user-friendly
than Flare. Both frameworks are open source and support necessary security and privacy functionalities, with
sufficiently detailed documentation. The main decision criteria were to favor simplicity and faster learning with
Flower, or a more comprehensive and production-ready user interface with Flare. Since SECURED, being a
research and innovation project, is expected to develop and test several new security and privacy primitives that
have not been integrated into any frameworks, the potentially faster and easier integration with Flower makes
it the preferred choice for SECURED.

In more details, Flower [40] offers various aggregation strategies for the server. From accuracy point-of-
view, FedAdagrad, FedAdam, FedAvg, FedXgbNnAvg, FedXgbBagging, FedXgbCyclic, FedAvgAndroid, Fe-
dAvgM, FedOpt, FedProx, FedYogi, and QFedAvg are supported. From robustness point-of-view, FedMedian,
FedTrimmedAvg, Krum, and Bulyan are supported. From a privacy point-of-view (besides secure aggregation
as in FaultTolerantFedAvg), DPFedAvgAdaptive and DPFedAvgFixed are supported. The overhead of these
advanced mechanisms are benchmarked on the corresponding website and paper.

An initial implementation of some aggregation methods for outlier detection using Flower corresponding to UC 2
(telemetry) can be found in the internal project repository (https://uva-hva.gitlab.host/secured/wp3/t3.
2/telemetry.git). We designed and implemented a robust scheme to detect sudden changes in the status of
patients. A single Temporal Convolution Network (TCN) predicts the readings of five different sensors deployed
on the patient’s body. Anomaly is triggered when the differences between the predicated and actual values
exceed a certain threshold. The training is also simulated in a federated setting with different number of clients
having identically distributed training data. Results show that Federated Learning has negligible performance
loss compared to the centralized training in this particular setting.

4.3 Risk Analysis

Risk analysis is a systematic process used to identify, assess, and prioritize potential risks or uncertainties that
could negatively impact the success, objectives, or operations of the collaboration within Federated Learning.
It enhances decision-making and facilitating communication and transparency among stakeholders. It also
helps participants proactively address uncertainties, make informed decisions, and increase the likelihood of
the collaborations’ success.

Risk analysis involves evaluating the likelihood of risks occurring and their potential consequences to make
informed decisions about how to manage or mitigate these risks effectively. In general, the risk analysis is
composed of the following main steps, repeated until all Risks become acceptable:

1. Define the context of the analysis: the aim of ML and work flow of data collection

Define the perimeter of the analysis, i.e., the actors (Risk Sources) and the data involved (Assets).
Define the controls already in place and assess their mitigation level.

Define the associated Risks for each Risk Source (Adversary goals).

Define possible Threats for each Risk.

o o w0 DN

Apply further controls to mitigate Risks (Mitigations).

Within this document, for all relevant federated SECURED use cases, we rigorously go through the Assets,
the possible corresponding Risks and their Sources, and detail the related feasibility and likelihoods. We also
mention a couple of Threats that might realize the Risks, and finally suggest several mitigation strategies to
provide a comprehensive overall picture. Before presenting the results of the risk analyses, we review the main
concepts that are important for the analysis.
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4.3.1 Attack Categories
In the realm of cybersecurity and Machine Learning, attacks can be broadly categorized along four edges:

i) who is the attacker (Attacker ldentity),
ii) what are its capabilities (Attacker Capability),
iii) what information is available to the attacker (Attacker Information),

iv) when does the attack take place (Attack Time).

4.3.1.1 Attacker Identity

An attack can be carried out by insiders (e.g., the aggregator server or any client) or outsiders (e.g., an
eavesdropper on the communication channel between clients and the server or among users of the final model).
The insider attacker is more capable, especially when executed by the server. Relative to the clients, the source
of an attack can be a single client or multiple clients launching a coordinated attack.

4.3.1.2 Attacker Capability

Concerning the access to modifications each user has, the two most common threat models in Federated
Learning are honest but curious (or semi-honest) and malicious. The former is a passive, while the latter is
an active attack, depending on their engagement level and objectives in exploiting vulnerabilities or attacking
systems.

Passive attacker is one who monitors or observes the system or network without directly altering or affecting its
operation. They may eavesdrop, collect data, or analyze network traffic to gather information,
gain insights, or identify potential weaknesses for future exploitation. Its objective is to gather
sensitive information, such as credentials, personal data, or system configurations, without be-
ing detected. They typically try to remain undetected while focusing on reconnaissance and
information gathering.

Active attacker takes more direct and intrusive actions within the system or network. They may attempt to ma-
nipulate, disrupt, or interfere with the normal functioning of systems or data. Their aim is to cause
damage, steal sensitive information, disrupt operations, or compromise the integrity of systems.

4.3.1.3 Attacker Information

Another aspect to classify the attacker is the so-called background knowledge, which could refer to their level of
understanding, expertise, and familiarity with various aspects of systems, networks, vulnerabilities, and security
measures. This knowledge significantly influences an attacker’s capability to launch successful attacks and
evade detection. Concerning Machine Learning, the attacker may need information about the training data, and
depending on its extent, there are many categories [42]. For example, the attacker could access to a portion of
the training data with or without labels, or know only about the statistical properties (e.g., its distribution).

The different access types that are available to the attacker also falls here. The terms white box and black
box can be used to describe different levels of access, knowledge, or control that attackers may have over the
Federated Learning system and its components.

+ A white box attacker has detailed knowledge or access to the internal workings, algorithms, or models
used in the Federated Learning process. This level of access allows the attacker to fully understand the
architecture, parameters, or even the training data used in the distributed model. Such an attacker may
perform targeted attacks, potentially compromising the model’s integrity and harming the overall learning
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process. They may also attempt to reverse-engineer the model or uncover sensitive information from the
Federated Learning setup.

» A black box attacker lacks detailed knowledge or access to the internal workings of the federated learning
process. They only interact with the system externally, without insights into the model’s architecture,
individual device data, or model updates. Black box attackers aim to disrupt or compromise the Federated
Learning process without detailed knowledge of the model or the individual device data. Their focus is on
attacking the communication or transmission aspects of the Federated Learning setup.

4.3.1.4 Attack Time

Considering which stage of the process the attacker has access to, the attack can happen at training time and
at inference time. In the former, the attacker attempts to learn, influence, or corrupt the FL model itself, for
instance by running an active data or model poisoning attacks. In the latter, the attacker targets the gradients
(individual or aggregated) to uncover sensitive details about the underlying datasets of other clients.

4.3.2 Threats and defense techniques: Security and Privacy aspects

It is important to assess and address threats (detailed in D4.1) in the design and implementation of Federated
Learning systems to ensure robust security protections.

Threats

Concerning security, these threats include malicious behaviors [43], such as Sybil Attack [44] (an adversary
creates multiple fake participants to disrupt or manipulate the collaborative learning process), Byzantine At-
tack [45] (involves participants behaving maliciously by providing incorrect or misleading updates to the fed-
erated learning system), Adversarial Attack [46] (specially crafted input data that are intentionally designed to
cause misclassification or incorrect behavior in Machine Learning models), Poisoning Attack [47] (malicious
participants intentionally inject malicious updates into the learning process), and Backdoor Attack [48] (hidden
vulnerability or malicious behavior intentionally inserted into a model by an adversary).

On the privacy side, Federated Learning may expose sensitive data [49]. Unauthorized access to participant
data or the leakage of private information during the model training or aggregation process can lead to privacy
breaches and compromises. Some corresponding attacks are Model inversion [50] (exploits the outputs of
a Machine Learning model to infer sensitive information about individuals by reconstructing attributes of the
datasets used for training), Membership inference [51] (infer membership information by analyzing the model’s
outputs for the target data samples), Property inference [52] (aims to infer sensitive or confidential properties
of the training data), Reconstruction attacks [53] (reconstruct the original training data by leveraging the trained
model and its outputs, parameters, or gradients), and (Hyper)parameter inference [54] (aims to infer sensitive
or confidential information about the parameters of a Machine Learning model).

Defense Techniques

Ensuring the integrity of the Federated Learning system and implementing robust defense mechanisms to detect
and mitigate security attacks is crucial for maintaining the security and reliability of the collaborative learning
process. Several mitigation strategies can be employed to counter these threats and maintain the integrity and
privacy of the Federated Learning process [55]. Such mechanisms are Byzantine Resilience [56] (the ability
of the system to withstand and mitigate malicious behaviors or attacks from participants), Adversarial Robust-
ness [57] (the ability of the system to withstand and mitigate adversarial attacks, particularly those involving
adversarial examples), and Certified Defenses [58] (provides a formal guarantee or certification of the model’s
robustness).
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Concerning privacy safeguards, the sharing, and aggregation of FL data can pose privacy risks. There are a
handful of privacy-preserving techniques that either partly mitigate or entirely prevent the above-listed attacks,
such as Differential Privacy [59] (inject noise to the training process to prevent the identification of individual data
samples), Secure Aggregation [60] (allow participants to aggregate their local model updates without revealing
their individual contributions).

4.3.3 Results for the Use Cases

In this subsection we scrutinize each SECURED Use Case, i.e., we highlight the actors, the assets, and the
adversarial risks and threats considering the previously mentioned attacker dimensions. Furthermore, we list
possible mitigation strategies. At the end of this section, we provide a table where risks are summarized for all
UCs with their specifications.

4.3.3.1 Use Case 1: Real-Time tumor classification Development

This pilot aims to achieve high-accuracy, real-time, and low-latency performance for hospital tumor classifica-
tion. In more detail, it uses real-time ultrasound data of the brain to enhance an earlier Magnetic Resonance
scan record. As a corollary, the data can be used for identifying the patient (as one can infer the face of the
patient) from Magnetic Resonance scan data, so besides its medical nature, there is a second reason why
it must be protected. On the other hand, the adjustment process (3D transformation) involves only classical
algorithms (no Machine Learning is involved). Since Federated Learning is not involved in this use case, no
risk analysis is hecessary for Federated Learning aspects.

4.3.3.2 Use Case 2: Telemonitoring for children Development

Context. This pilot aims to achieve live automated real-time remote monitoring for children by taking advantage
of all the clinical data received from patients, such as blood pressure, heart rate, oxygen saturation, and more.
After being passed through the anonymization processes and made certain that privacy is ensured by the
benchmarking tools, they are fed to the federated system to train ML algorithms.

Risk Sources. The actors are healthcare institutions such as hospitals and the aggregator server (in case not
a decentralized serverless mechanism is utilized [61]). The data originates from children by remote sensing
medical devices (which is more trustworthy than an average loT device). The device relays the measurements
in an encrypted form to the hospital, which trains a local model, which are aggregated by the InnoHub.

Assets. The assets for this Use Case are the medical data used for training and the trained model. The
types of data are basic medical measurements, such as blood pressure. The sensors generating the data are
equipped on children, who enjoy elevated protection in the eyes of the law, including the privacy point of view.
Therefore, this data is highly sensitive and personal.

Besides its intellectual property, training the model costs time, resources, and money, so to avoid harming
the institutions participating in the training, the federated model should be protected. In turn, the model might
contain information about exact training samples.

Finally, during training, the intermediate models are accessed by both the hospitals and the aggregator server (if
exists). The reason for the former is to adjust the learning parameters of the model if it performs suboptimally.
Yet, having access to the model updates (or gradients) opens the door to a more powerful family of privacy
attacks, especially if those values are not aggregated, but correspond to specific participants.

Adversary goals. We do not consider intentional data poisoning among the threats, as the data subjects have
neither motivation nor capability to tamper with the safety-hardened medical devices. Similarly, the medical
institutes have no incentives to intentionally manipulate the collected data, as the corresponding reputation loss
(if noticed) would make such an act catastrophically undesired. On the contrary, the data could unintentionally
be corrupted (e.g., remote medical device malfunction, incorrect human usage or placement, etc.) or plainly of
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low quality (e.g., missing features, non-representative samples, etc.).

Evasion attacks (i.e., modifying the input of the model at inference time to cause misclassification) are also not
a real concern. Firstly, there is not much motivation of the patients (or the user in general) to fool the system,
as it serves his/her own interest. Secondly, infiltrating the remote sensing medical device is not an easy task,
so the effort might not worth the desired result.

The most probable attacks concerning this Use Case are passive (i.e., the attackers are honest but curious or
semi-honest). The attacker aims to infer as much information as possible about the assets. For instance, the
medical institutions participating in federated learning could infer sensitive details about the other participants’
data. This risk is even more realistic if the attacker has access to the intermediate models of the training (such
as the aggregator server, if applicable). Another attacker might be third parties with various access to the trained
model (e.g., white or black box). Such malicious actors could execute data-stealing and model-stealing attacks.

Threats. As a summary of the above risks, the possible threat scenarios are enlisted below.

» During federated learning training, participants aim to deduce information about each other’s datasets.
This could occur through various means, such as a reconstruction attack [53], membership inference
attack [62], or property inference attack [63].

+ In the training phase, a malicious attacker, equipped with access to the aggregator server, might attempt
to extract information about datasets through the same techniques mentioned above, i.e., reconstruction,
membership inference, and property inference attacks.

+ A third party possessing white box access to the trained model, for example, having purchased it, seeks
to infer details about the data used for training. This inference can be achieved through methods like the
reconstruction attack proposed in [64].

» Another third party, with black box access to the trained model, aims to deduce information such as
weights, hyperparameters, etc., about the model. This objective can be realized through a model stealing
attack proposed in [65].

» The presence of bad data from certain federated learning participants can distort and diminish the per-
formance of the shared model. This situation is particularly relevant in scenarios where the quality of
datasets is questionable [66], significantly impacting the final models [67].

Mitigations. There are several countermeasures to tackle any of these threats. However, most existing
techniques affect other aspects of the Federated Learning model: for example, privacy-preserving techniques
could make the data quality measurements harder or even decrease the model’s performance (training time &
accuracy). Consequently, the methods enlisted below should be applied with care.

 Data Privacy Attacks using the model updates: Secure Aggregation [60] plays a crucial role by conceal-
ing only the gradients. This ensures that even if an attacker can glean sensitive information from the
aggregated model, the connection to specific participants remains obscured. Additionally, Differential Pri-
vacy [59] provides a means to restrict the extent to which leaked information can be realized, preventing
undue attribution.

« Dishonest Server: While Secure Aggregation (possibly enhanced with shared noise to hide the aggre-
gated model from the server) and Differential Privacy are the predominant privacy-enhancing technologies
to thwart such privacy attacks, other methods, albeit without formal guarantees, exist. These include tech-
niques such as regularization [68] or compression [69].

» Data Privacy Attacks using the final model: Differential Privacy serves as a mitigating factor. However,
other applicable techniques increase the gap between the training data and the trained final model. Ex-
amples include Model Distillation [70] and PATE [71].

* Model stealing: Differential Privacy also diminishes the success of such attempts. However, alterna-
tive techniques can complement it by complicating the relationship between the model and predictions.
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Ensemble Models [72], Model Stacking [73], and similar approaches are among these effective counter-
measures.

» Bad data: Evaluating the quality of datasets in Federated Learning involves various methods. The Shapley
value [74] and its approximations stand out as flagship definitions, but several other methods exist. Care
must be taken though, as these alternatives vary significantly in terms of complexity, applicability, and
inherent properties [75].

4.3.3.3 Use Case 3: Synthetic data generation for education

Context. Data for training health personnel is limited by access due to privacy rights and the size of available
data sets from actual cases. Using the SECURED architecture, this task expects to generate a large amount
of GDPR-compliant synthetic data from accurate statistical data from the consortium health institutes. Such
a process must protect individual data privacy, which will be realized via the SECURED anonymization tools.
Artificial data will be used in the education of medical doctors to show the progression of a particular disease or
lesion (e.g., a tumor), demonstrate intervention cases (e.g., change in fetal heartbeat signal) or teach statistical
methods (e.g., for work flow management plans).

Risk Sources. The actors are healthcare institutions such as hospitals (with access to the medical data)
and educational institutes such as medical universities (with access to the medical data as well and to the final
trained model).

Assets. The corresponding assets for this Use Case are the medical data used for training and the trained
generative model. The utilized data types are cardiotocographic, pathologic, and radiologic data. The car-
diotocographic data consists of two time series measuring the fetal heartbeat and uterine contractions during
pregnancy and labor. Concerning pathologic data (often tissue samples from a biopsy), cell-level images of the
(cancerous) colon are utilized. Finally, the exact radiologic data are mammographic, i.e., x-ray images focusing
on (cancerous) breast. All data are accompanied by clinical metadata (e.g., age, time of intervention, symptom
classification code). Moreover, besides its medical nature, all of these data could be considered sensitive and
personally identifiable information, as they could be unique to the patients. Hence, it must be protected.

The trained generative model should also be handled with care due to its confidentiality. Training such models
need significant effort in terms of time and computational resources (which ultimately translates into invested
money), so model stealing or model extraction would harm the medical institutes participating in the training.
Such a model carries intellectual property as well as information about the training samples, which should be
protected.

Adversary goals. Medical institutes have no incentives to intentionally tamper with the collected genuine
data, so data poisoning poses no threat. The main reason is the inevitable reputation splash back and the
corresponding public shame resulting from such an act if it comes to light. Hence, such misdeeds are not likely.
Although an insider attacker within the institution could launch such attacks, however, this analysis does not
consider such attackers, as are not specific to Federated Learning, and they pose an unacceptable risk for the
patients anyway. On the other hand, the data could unintentionally be corrupted (e.g., medical recording device
malfunction, human annotation error, etc.) or plainly of low quality (e.g., missing features, non-representative
samples, etc.).

Evasion attacks are also not applicable in relation with generative models. The reasonable attacks concerning
this use case are passive (i.e., the attackers are honest but curious), i.e., aims to infer as much information
as possible about the assets. For instance, the medical institutions participating in federated learning could
infer sensitive details about the other participants’ data. A similar attack can be executed by accessing the
aggregator server (if employed). Standard privacy attacks are acquiring additional information from the model
about the underlying training data. Besides the participants, third parties with access to the trained model (e.qg.,
the black box model is sold to them) could also execute such a data-stealing attack. Additionally, model stealing
attacks are also plausible, as these third parties with access to the model as a service might reverse-engineer
the model (i.e., its parameters) from the outputs.

Threats. As a summary of the above, the possible risk scenarios are enlisted below. Additionally, we included
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some relevant threats which could realize these risks.

+ During training, the FL participants wish to infer information about other participant’s datasets. This can
be realized for instance via the reconstruction attack proposed in [53], or via the membership inference
attack proposed in [62], or even via the property inference attack proposed in [63].

+ During training, a malicious attacker with access to the aggregator server could try to infer information
about the datasets via the previously mentioned reconstruction, membership inference, or property infer-
ence attack.

+ A third party with a white box access to the trained model (e.g., bought it) wish to infer information about
the data used for training. This can be realized for instance via the reconstruction attack proposed in [64].

+ A third party with a black box access to the trained model wish to infer information (e.g., its weights,
hyperparameters, etc.) about the model. This can be realized for instance via the model stealing attack
proposed in [65].

» The bad data of some FL participants distort and decrease the performance of the shared model. This
can happen, as for many datasets in the wild the quality is questionable [76], which would affect the final
models severely [67].

Mitigations. There are various countermeasures to tackle any of these threats. However, most existing
techniques affect other aspects of the FL model. For instance, applying a privacy-preserving mechanism could
make the data quality determination harder, increase (or create) the fairness gap, and negatively affect the
model’s performance (longer training time & poorer accuracy) too. Consequently, they should be applied with
care, and a balancing exercise must be done. A non-comprehensive mitigation list for the highlighted threats is
below.

+ Data Privacy Attacks using the gradients: Secure Aggregation [60] hides the individual model updates, so
even if a participant could infer some sensitive information from the aggregated model, the attacker would
still not be able to connect that information to any of the participants. Besides preventing the attribution
of the leaked information, via Differential Privacy [59] it is also possible to limit to what extent can the
leakage be materialized.

» Dishonest Server: Secure Aggregation hides individual model updates, but the aggregated gradients still
could leak information. Masking the aggregated gradient from the aggregator is also possible via SMPC.
Besides, Differential Privacy applies here as well, just as compression [69] and regularization [68].

+ Data Privacy Attacks using the final model: Differential Privacy would also decrease this attack’s success,
but other techniques are also applicable which increase the distance between the training data and the
trained final model, e.g., Model Distillation [70], PATE architecture [71], etc.

» Model stealing: Differential Privacy would also decrease this attack’s success, but other techniques are
also applicable which complicate the relationship between the model and the prediction, e.g., Ensemble
Models [72], Model Stacking [73], etc.

» Bad Data: A handful of methods exists to evaluate the quality of datasets in FL. The flagship definition is
the Shapley value [74] and its approximations, but others exists as well, and they heavily vary based on
their complexity, applicability, and properties [75].

4.3.3.4 Use Case 4: Access to genomic data Development

Context. The goal of this task is to test the use of the SECURED framework to analyze protected genetic data
from approximately a million cancer patients, opening up the opportunity of doing biomedical research at an
unprecedented scale. However, there are two major bottlenecks to exploiting this data, the actual access to it
from external partners due to privacy and legal issues and the time required to perform the analysis. This task
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will utilize Federated Learning to train models on all existing genetic data as well as synthetic data, produced
by the initial genomic data as basis, maintaining patient privacy while increasing accuracy and reducing time.

Risk Sources. The identified actors in this Use Case are the biobanks, the participating healthcare institutes,
and the aggregator server. The biobanks have a strict access policy, meaning only aggregated query results
could leave the institution’s hardware. At the same time, individual records (i.e., genomic sequences or EHR
data) must remain within the premises.

Assets. The corresponding assets for this use case are the genomic data used for training and the trained
model. The utilized genetic data is tabular, and either the entire dataset (with slightly over 2000 features) or a
compressed version (e.g., a scalar value representing a risk score calculated by some function) is used. Fur-
thermore, this data with genetic origin might be complemented with environmental data (e.g., details contained
in the EHR, represented in around 20 features) to enhance further the final prediction, which is a risk factor
(i.e., chance) for approximately ten cancer types. Genetic data is interdependent, meaning that your genetic
information — which is sensitive personal data due to its medical nature — contains details about others (e.g.,
your family) as well. If leaked, such data could compromise the privacy of the corresponding data subject and
many generations (even in the future).

Moreover, the trained model could be stolen or extracted, harming the health institute that financed the training,
as accessing the biobank’s data is costly. Training a computationally not demanding model would already
require heavy investment. Moreover, the model could carry sensitive information of an entire nation. Hence,
unauthorized access to the model would lead to sensitive data disclosure. The model’s prediction must also
encompass an explanation of the final decision to ease the medical experts’ use of this supplementary system.
The envisioned architecture of the model is linear regression or random forest, which enables such explanations
by default without much intervention. On the other hand, such extra information easily enables stronger privacy
attacks.

Since model sharing will be studied in UC 2, at the moment it is not considered for this use case. Because of
this, in this use case, besides the server, only the participants have access to the model. These parties either
already have access to the biobank’s data or could access it with less effort than reverse engineering the trained
model. Consequently, no motivation exists to execute any of the mentioned model-related attacks.

Adversary goals. We can assume the biobanks are trusted, so the genetic data is clean, and no malicious
manipulation can happen. As such, data poisoning poses no threat. However, not all data is adequate for all
tasks: there might be specific risk calculations where the data from a particular biobank is more suitable than
others or vice versa. Besides, evasion attacks might be feasible once the model is shared with third parties in
some form (e.g., inference/prediction-as-a-service). However, as mentioned already, this is out of scope.

A reasonable attack concerning this use case is passive (i.e., the attackers are semi-honest, and the attack
aims to infer as much information as possible about the assets). For instance, a malicious actor accessing the
aggregator server could infer sensitive details about the biobanks’ genetic datasets or the complementary EHR
data.

Threats. The possible risk scenarios are listed below as a summary of the above. Additionally, we included
some relevant threats that could realize these risks.

» The inadequate data of some biobanks (concerning particular tasks) or corrupted EHR data (due to human
input, etc.) distort and decrease the performance of the shared model. If this happens, it will affect the
final models severely [67].

» During training, a malicious attacker with access to the aggregated model could try to infer information
about the datasets via the reconstruction [53], membership inference [62], or property inference [63]
attack.

Mitigations. There are various countermeasures to tackle any of these threats. However, they should be
applied with care. A non-comprehensive mitigation list for the highlighted threats is below.

» Bad Data: A handful of methods exist to evaluate the quality of datasets with a particular task in mind
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for the participants of FL. The flagship definitions are the Shapley value [74] and its approximations, but
others exist as well, and they heavily vary based on their complexity, applicability, and properties [75].

» Model reverses engineering: the defense techniques (such as Secure Aggregation and Differential Pri-
vacy) mentioned in the other use cases also apply here. Moreover, due to the nature of the data, the
training takes place at the biobanks. Furthermore, due to the nature of the model (ensemble), it could be
sufficient to aggregate the predictions instead of the models, providing a privacy boost. Finally, due to the
characteristics of the shared data, it is feasible to rely on cryptography instead of an aggregator server,
which further limits the attack surface.

4.4 Conclusions

In the context of the SECURED project, Federated Learning enables privacy preservation of health data by
maintaining distributed data used in the training of a centralized model locally. The selection criteria for the
choice of the FL library, Flower, are derived from performing risk analysis. A compact overview of the results
is in Table 13. This approach will help in selecting the FL parameters to be used in the SECURED Library as
well.

Access Privacy Robustness Fairness
Use Case Risk Source Final  model  Final model  Model Data Data Model Training  Inference Data  Data
I(_Fede_ratt)ad (query access)  (fullaccess)  updates extraction extraction time time bias quality
earning

Remote Sensor X X ? X

Hospitals X X X X
Telemetry Aggregator X X ? X

Third party X X X X

Third party X X X

Hospitals X X ? X
Synthetic University X X X R X
data Aggregator X X X
generation  Third party X X X X

Third party X X X

Biobank X X X ? X
Genomic Health Institute X X X X

Aggregator X X ? X

Table 13 — Identified risks for the use cases.
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5 Handling Bias and Fairness in Al

5.1 Overview of Concepts

Al and ML tend to reproduce and amplify bias from training data. Since we need to mitigate this problem, we
use Fairness approaches to insure unbiased Al. State of the art regarding unbiased techniques is presented
in deliverable D4.1. For completeness, in this section we summarize the most important concepts described
there. In the ML process, bias may come from different origins:

+ Bias coming from data: two biases are particularly important: representation and sampling biases due to
non-representative samples in the different entities participating in the federation;

+ Bias coming from the algorithms: evaluation bias occurring during the algorithm evaluation with a bias
present in dataset used for evaluation ;

» Bias coming from the users: population bias arises when statistics, demographics, representatives, and
user characteristics are different in the user population of the platform compared to the original target
population.

The objective of Task 3.3 is to automatically detect these biases and to develop methods for mitigation of such
biases, during the three phases of a ML process:

» During pre-processing the objective is to enhance the fairness of models by rectifying training data;

 During in-processing, we customize ML/DL algorithms to directly train fair models, with the help of an
adversarial network.

» During post-processing, approaches will be developed to revise the prediction scores of a Machine Learn-
ing model after training to make predictions fairer.

We propose fairness techniques methods for two settings:

* In-processing methods for classification and regression tasks;

+ Fairness for generative models.

For the first setting, relevant metrics are extensively described in Deliverable D4.1. Compared to that, here
we extended the metrics for regression tasks and we selected an in-processing method that is suitable for
applications in the SECURED project.

The second setting comes from the needs of Use Case 3. We describe fairness metrics for generative models
and describe two methods for such problems: one based on importance weighting and the other based on
transfer learning. Since this topic was not previously address in Deliverable D4.1, we explain it here with the
due level of detalils.

5.2 Background libraries

Table 14 summarizes the selected libraries dedicated to fairness, discussed in depth in Deliverable D4.1. Doc-
umentation and tutorials existing for these libraries include examples on their use in classification task and
regression task, but, at the moment of the writing, the documentation available for generative model is quite
scarce. Because of this lack of available documentation, these libraries are currently not the best choice for
UC 3. The libraries characteristics are summarized in Table 14.

For classification, existing libraries implementing in-processing approaches are not suitable for complex use
case such as the ones in the SECURED project and in the medical domain in general, even if the target use
cases are simplified removing the need of fairness.
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Considering the pre-processing approaches instead, the reweighing technique, implemented e.g. in AIF360,
will be used as benchmark for complex Use Cases in SECURED. Furthermore, enhancing the state, there are
other and more promising algorithms for the regression and classification tasks will be implemented and tested
within the SECURED use case.

Module Language Methods Data ML Task License

AIF360[77] Python/R  State-of-the Art metrics (Disparate Tabular Classification Apache 2.0
Impact, Equal Opportunity Differ-
ence, etc.). Ten state-of-the-art miti-
gation algorithms (reweighing, reject
option classification, etc.)

fairlearn[78] Python Classical metrics (Demographic Tabular Classification and MIT
Parity, equalized odds, etc.). Ad- Regression
versarial, reduction, preprocessing
(correlation remover) and post-
processing (threshold optimize)

fairness[79] Python State-of-the Art mitigation methods Tabular Classification Apache 2.0
by Calders[80], Feldman[81]
fairness-compass[82] Java Classical fairness metrics (Equal- Tabular Classification Apache 2.0

ized odds, calibration, etc.)

Table 14 — Existing libraries for Fairness

5.2.1 Testing metrics for regression tasks

Metrics for classification have been described in Deliverable 4.1, therefore here we focus on the progresses
made in the last months. Regression tasks need specific metrics to measure fairness. [83] proposes a method
to measure fairness defined by Equation (2).

E(f(zi)|lz; € A) — E(f(z:)|zi € B), )
where:

+ f is the regressor. For instance, in the use case 2, it is a tool to predict one quantitative value of the
monitored children;

+ [E is the notation of the mathematical expected value;

» A and B the two groups, e.g. in use case 2 children over and under an age.

There are several metrics to measure Fairness for regression tasks. One option available for us is to extend
the metric to measure fairness of the model performance, as in Equation (3):

E(f(zi)|w; € AY) — E(f(x:)|x: € B,Y), )

where Y is the ground truth for the quantitative value. Here we are measuring the ability of the Al model to
predict with the same level of performance, regardless of the target category (for instance, in Use Case 2, this
metric will allow measuring the ability of the Al model when applied to the children).

Fairness can also be calculated according to the Al model calibration, e.g., by considering the Equation (4):
E(Y|z; € A, f(x;)) — E(Y|z; € B, f(x;)). (4)

Similar extensions are applicable to the individual fairness metrics proposed in D4.1 for the regression task.

Steinberg et al. [84] propose to measure fairness of a regressor by using probabilistic classification. The authors
introduce approximations of independence, separation and sufficiency criteria by observing that they factorize
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as ratios of different conditional probabilities of the protected attributes.They train Machine Learning classifiers,
distinct from the predictor, as a mechanism to estimate these probabilities from the data.

5.2.2 Fair classifier based on triplet loss

Metric learning [85] has been used to achieve individual fairness [86], whose objective is that two individuals
differing only by the sensitive attribute are treated in the same way by the model. Metric learning aims at
automatically constructing task-specific distance metrics from (potentially weak) supervised data, in a Machine
Learning manner. Triplet learning [87] can be used in this context. Triplet loss have been used for fairness,
e.g., by [88] and [89]. Since they have been successfully used in applications with large amount of data, they
appear to be suitable also for the use cases of SECURED.

Consider a binary supervised classification task. = (z1,...,2k, s) is a feature vector and y a binary label to
predict. s € {0, 1} a sensitive attribute. The objective is to learn an embedder E into a d-dimensional fair em-
bedding space. » = E(x) denotes the embedding representation. Given a triplet ((z*,y*), (z,y™), (z7,y7))
with an anchor, a positive and a negative. (2%, 21, 27) is the corresponding embedding. Let « € R the triplet
margin and assuming the use of the Euclidean distance. The Triplet loss is given by Equation (5).

liripter = max(|[2" — 23 — [|=" — 2|3 + a,0). (5)

Triplet Loss encourages dissimilar pairs to be distant from any similar pair by at least a certain margin value.

The two followed triplet selection methods are candidate for potential bias mitigation selection:

« the positive is a copy of the anchor but with the sensitive feature flipped, thus z* = (z1,...,7x,5) and
x~ is selected randomly amongst samples for which y— # y*

« the positive is a copy of the anchor but with the sensitive feature flipped, thus 2+ = (z1,...,2k,5) and
x~ is selected randomly among all samples except the anchor

Gornet et al. [88] uses the triplet loss to train a Convolutional neural network dedicated to facial recognition.
Triplet loss has proved its utility in the case of unbalanced dataset (e.g., [90]), which are relevant for SECURED,
for instance, in UC 3, where image generation can be used with unbalanced dataset. In that case, to evaluate
both the quality of the images generated and the fairness of the generator, we need a classifier as fair as
possible (see Section 5.3.1).

5.3 Fairness for generative models

5.3.1 Metrics

For a Generative model, we define fairness by the ability of the model to generate data while preserving the
equal repartition according to the sensitive attribute. A generative model is fair for a sensitive attribute if, for each
different value of the sensitive attribute, the model has the same probability of generating data. For instance,
an image generator is fair for gender if the generator has the same probability of generating an image of each
gender. For the medical domain, it is problematic when considering cardiovascular disease, where there is
some historical bias against women who are underrepresented in the studies [91].

In many cases, the sensitive attribute, denoted by s, is a latent attribute and can only be inferred from the
data generated (e.g., the gender of someone in an image can be inferred, but is not clearly labeled). For this
reason, we need metrics based on the ability to infer the sensitive attribute according to the data generated.
For that, we need a classifier C able to infer the sensitive attribute according to the data generated. For an
observation x, the classifier C produces a soft output C(z). We can compute a discrepancy measure D(.,.)
between E,..,, (C(z)), with gy the distribution imposed by the generator Gy and z ~ ¢y an observation sample
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from ¢y, and the uniform probability vector 5 = [1/k,...,1/k], with k£ the number of different classes of the
sensitive attribute. The fairness discrepancy (FD) [92] is given by Equation (6). As the FD is dependent of a
classifier C, we denote it in Equation (6) by F'D.

FD¢(G) = ||p = Eang, (C(2))]]2- (6)

If FDo(Gy) = 0, then Gy is considered to be perfectly fair for the sensitive attribute. [93] proposes similar
metrics while considering in addition whether the contextual features are preserved. However, both F D and
their measure are highly dependent on the classifier C. The C can make errors in practice. Even with a perfectly
fair Gy, F'Dc(Gp) can be not equal to zero.

If we consider Use Case 3 about image generation for educational purpose, e.g., of X-ray lung, we can transpose
the different element in the following way:

» (' is a classifier that predicts that an X-ray lung image corresponds or not to a sick patient;
* gy is the data distribution learned by a generator Gy trained to generated X-ray lung image;

By default, in this case, p = [1/2,1/2] there are two classes (sick and not sick). In this case, that means
that we want to generate as many images of a sick patient as of a healthy person. We can adapt this
value according to that we want to generate more data of one category versus the other.

As it can be seen, the sensitive attributes are to be known to compute these metrics. These metrics have to be
defined together with the experimental protocol before the start of the experiments (see Figure 2 of Deliverable
D4.1 for the lifecycle of an Al system with the stages where bias can occur). Using the ||.||2 is a common
approach, but some other distances (e.g., ||.||1) can be used too.

5.3.2 Methods
5.3.2.1 Importance Weighting

[94] works on generative adversarial network [95] and considers a case where a large data set Dy, is available,
but is biased against a sensitive attribute (i.e., one category of the sensitive attribute is underrepresented). It
assumes that a small data set D,..s is equilibrated regarding the sensitive attribute. They propose to reweight the
observation of Dy, by using the Algorithm 1. In the Algorithm, Y = 0 is used to indicate that the observation-
sensitive attribute is in the favored category, Y = 1 is used otherwise. An example of application of the first
stage of Algorithm 1 on the SECURED project is the classification of chest images, when we have access to
two chest image datasets: one being a large chest image dataset that includes several people having a disease
and only few healthy people and the other dataset being much smaller but balanced chest image dataset. The
classifier given by Algorithm 1 is trained on the sick data from the large dataset and on the healthy data from
the second dataset, ultimately learning to distinguish on the basis of a chest image whether the person is sick
or not.

This approach suffers from several drawbacks. First, we need to access both a large biased dataset Dy;,s and a
reference without bias dataset D,..;. Second, the importance of weighting will be dependent on a classifier. The
weights can potentially change a lot according to the classifier that is trained. Moreover, this classifier will be
learning on an unbalanced dataset. However, this classifier is easy to be implemented and offers a benchmark
for other classifiers.

When applied to use case 3 on lung X-ray image generation with an under-representation of healthy person
versus sick patient, it is translated as following:

* Dyiqs is @ large lung X-ray dataset where sick patients are strongly over-represented compared to healthy
patients;
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Algorithm 1 Importance weighting for generative model

1. Estimation of weight importance:

(a) Learn binary classifier ¢ for distinguishing (Dy;as, Y = 0) versus (D,.f, Y = 1);

(b) Compute the importance weight (z) = fgzé}f;

for all z € Dyiqs;
(c) Forall z € D,.y, assign w(z) = 1.
2. Weight GAN training:
(a) Initialize the model parameter ¢ at random and set the full dataset D = Dy;q5 U Dy
(b) while training do:
i. Sample a batch of points B from D at random;
ii. Setthe loss L(0; D) = 57 3, p (i)l 0);
iii. Estimate the gradients and update the model parameters according to the optimization strategy.

* D,.r is a small lung X-ray dataset where sick patients and healthy patients are more or less equally
represented,;

* cis a classifier that has been trained to distinguish between sick and healthy patients;

» The weight GAN is the final generator that will generate new lung X-ray images of sick and healthy pa-
tients. This generator built in this way is expected to generate a higher proportion of healthy people than
a generator based on D;,s alone, and to generate data of better quality than one produced using a
generator trained only on D,..¢.

5.3.2.2 Fair Generative models based on Transfer Learning

Generative model are data costly. Working on the large dataset, even biased, allows pre-training a model able to
extract important features from data. Transfer Learning allows transferring this information on model fine-tuned
on a smaller unbiased dataset.

[96] proposes an approach based on Transfer Learning [97] to ensure fairness in adversarial generative models
[95]. Transfer learning aims at improving the performance of target learners on target domains by transferring
the knowledge contained in different but related source domains. Neural networks have achieved significant
success in many areas including classification, regression and clustering. However, as their learning depends
on data that has been seen during the training phase, these methods work well under a common assumption:
the training and test data are drawn from the same feature space and the same distribution. When the distribu-
tion changes, most of the models have to be rebuilt using new training data. In many real-world applications, it is
expensive or impossible to re-collect the needed training data and rebuild the models. Moreover, most models
have to be trained again when a new task slightly differs from the original task, even though the knowledge and
skills learned in previous tasks could be used for novel tasks. Transfer learning allows the domains, tasks, and
distributions used in training and testing to be different (see Figure 11).

[96] proposes two approaches based on Transfer Learning to achieve Fair Generative Adversarial network,
given by Algorithms 2 and 3.

Algorithm 2 Fair Transfer Learning (FairTL), reformulated from [96].

1. Pre-train a generative model using the large, biased dataset;

2. Fine-tune by updating all the layers of the generator and the discriminator.
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TRADITIONAL MACHINE LEARNING TRANSFER LEARNING

DATASET 1 MACHINE LEARNING MODEL 1

KNOWLEDGE

DATASET 2 MACHINE LEARNING MODEL 2

Figure 11 — Training process for traditional Machine Learning models and transfer learning.

Algorithm 3 Fair Transfer Learning ++ (FairTL++), a refinement of FairTL, reformulated from [96]

1. Pre-train a generator and a discriminator using the large biased dataset;
2. Transfer Learning on the reference dataset

(a) First stage of Transfer Learning on reference dataset:
* Frozen first layers of the discriminator and update the other layers of the discriminator. Update
layers of the generator.

» The network has two discriminators: the one that is currently updated and the discriminator of
the pre-trained generative model whose layers are frozen;

» The loss of the discriminator fine-tuned is regularized by the discriminator of the pre-trained
models.
(b) Second stage of Transfer Learning on the reference dataset :

» Update all the layers of the discriminator and the generator

» The networks have two discriminators: the one that is currently updated and the discriminator of
the pre-trained generative model whose layers are frozen;

* The loss of the discriminator fine-tuned is regularized by the discriminator of the pre-trained
models.

For Algorithm 2, first a Generative Adversarial Network is trained on a biased large dataset, and then is fine-
tuned on a reference dataset without bias. Due to the small size of the reference dataset, fine-tuning is sus-
ceptible to mode collapse. Mode collapse is a common problem when training GAN[98]. When training a GAN,
there are two objectives:

» The generator can reliably generate data that fools the discriminator;

» The generator generates data samples that are as diverse as the distribution of real-world data.

Mode collapse happens when the generated samples are very similar or even identical. Algorithm 3 proposes
two solutions to avoid mode collapse.

The first solution consists of using linear-probing before fine-tuning [99]. In linear-probing, a classifier head is
updated while freezing lower layers. [99] demonstrates that when a classifier is adapted to a new task, it can be
more efficient to first use linear-probing for a limited number of epochs and then use fine-tuning. Experimental
results from [99] suggest that linear-probing before fine-tuning allows to better adapt task-specific parameters
before Fine-Tuning, and generally works better for transfer learning. [96] adapts this approach for generative
adversarial networks, by considering the discriminator as a classifier. This is achieved by the first stage of
Transfer Learning of Algorithm 3 where the first layers of the pre-trained discriminator are frozen while all the
layers of the generator and the last layers of the discriminator are updated. This first stage is useful because
it is advantageous to first update a classifier head and frozen first layers for a limited number of epochs before
fine-tune all the layers when a classifier is adapted to a new task. [96] proposes to adapt this characteristic to the
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discriminator. [96] makes an empirical study to choose the number of layers to freeze. In real application, this
empirical study should be impossible to perform. Indeed, to choose the number of layers to freeze, the authors
executed Algorithm 2 on a large reference dataset, which will be not available in practice, and evaluated the
mean layer weight change, assuming that a low change in their weight indicates that they are less associated
with the sensitive attribute. In practice, we will not have access to the large reference dataset, but only to the
small reference dataset. However, the need for a large dataset is to limit instability during training. By repeating
Algorithm 2 on the small reference dataset, it is possible to also extract information about the standard deviation
of the mean layer weight changes, and so limit the impact of the instability. However, this is a potentially
costly approach. The second stage of Transfer Learning is achieved by fine-tune both the generator and the
discriminators (partially) updated during the first stage while maintaining the second discriminator layers again
frozen.

The second solution to avoid mode collapse is based on a multiple feedback approach. [100] and [101] use
multiple pre-trained discriminators to improve generative adversarial network performance in case of small
dataset. Based on this idea, [96] proposes to use the pre-trained discriminator on the large biased dataset
during the training of the adversarial network on the reference dataset in a multiple feedback loop. They retain
a frozen copy of the pre-train discriminator and train a new discriminator, ensuring double feedback on the data
generated by the generator. The weight in the feedback of each discriminator is a hyperparameter. The loss
associated to this double feedback approach is given by Equation (7).

minmax = E,ep,, (log D¢(x)) + AE.p. () (log(1 — D¢(G(2)))) + (1 = N E.<p, -y (log(1 — Ds(G(2)))), (7)

t Dt

where:

* D,y is the reference dataset;

» D, is the discriminator that is updated;

* Dg is the pre-trained discriminator that is frozen;

* p.(z) is the noise distribution as input to the generator;
* G is the generator that is trained;

* ) a hyperparameter that controls the weighting given to D; and Dg.

Both Algorithms 2 and 3 are illustrated by Figure 12, which comes from [96]. They can be used on a pre-trained
generative adversarial network. Such property is interesting for SECURED as it means that the two methods
are suitable to sanitize a generative adversarial network trained on a biased dataset.

As for the previous method, the different notation can be translated in the following way on use case 3 if we
consider lung X-ray image generation with a small proportion of healthy persons versus sick patients:

* Dyiqs is alarge lung X-ray dataset where sick patients are strongly over-represented compared to healthy
patients;

* D,.s is a small lung X-ray dataset where sick patients and healthy patients are more or less equally
represented;

+ G is the final X-ray image generator. This generator is expected to generate a higher proportion of healthy
people than a generator based on Dy, alone and of better quality than a generator trained only on D,.. ;.
This is the output of the algorithm that is more relevant for SECURED.

* D, and Dg are part of the training piping and are not crucial for the final output to SECURED. They are
trained to distinguish between true images and the images generated by the generators. They are useful
during the training because they force the generators to generate more realistic images as possible.

* p.(z) is a technical parameter. The generator takes in input a vector and from this vector generates an
image. p.(z) corresponds to the distribution of the vector given as input of the generator.
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Figure 12 — Fair Transfer Learning and Fair Transfer Learning++ illustration from [96].

5.4 Plan for integration for Fair generative models

5.4.1 Deployment as micro-service

With the progress of the project and the more precise definition of the use cases, the need for handling bias
have been identified, especially for medical image generation in an unbalanced context. These needs, not yet
identified in Deliverable D4.1, have led to a review of the state of the art on this domain, which is still relatively
unexplored in the literature. In this section, we present how we plan to integrate the reviewed methodologies
within SECURED. This plan may be updated as the project progresses and new requirements are identified.

We plan to deploy fairness module as four docker [102] or podman [103]containers. Each container will contain
Python scripts that are executable directly via command line or that can be called via an API. At the moment,
we plan to include in the module the following:

+ A classification script, used to train a classifier able to predict the image class (e.g., if it is a sick or healthy
patient). This classifier will be used to compute evaluation metrics (as explained in previous sections) and
will be used when the importance weighting approach will be used. It would take in input a configuration
file;

+ A training script, used to train the image generator, and taking as input a configuration file. The config-
uration parameter will provide at least the needed paths and the method used (importance weighting or
Fair Transfer Learning, for instance);

» An evaluation script, used to compute Fairness Discrepancy and other classical metrics used for evalua-
tion of the images generated;

* A generator script, that uses the generator trained to generate new images.

The non-exhaustive list of Python modules that will be used include the deep learning frameworks PyTorch [104]
and PyTorch Lightning [105] , one visualization module (e.g. plotly [106] or matplotlib [107] ), Python modules
to improve the user experience (e.g., typer [108] and rich [109] ) and a Python module dedicated to packaging
and dependency management like poetry [110].

50



SECURED D3.1 Scalable Secure Multiparty Computation, Federated Learning and Unbiased Al

Dias | large unbalanced
dataset

- small

balanced
dataset

l

°£@g

Classifier Pre-trained models Generator

O

A A

Faimess

Report
Generated Dataset

Figure 13 — Flow of the Fairness module.

Figure 13 illustrates the envisioned flow of the Fairness module. The module will be integrated into the SE-
CURED framework, but each component will be accessible also standalone.

5.4.2 Development process

To develop, test and demonstrate the fairness module, we will use the datasets that are extensively discussed
in Deliverable D2.1. We repeat here the main characteristics of these datasets that are relevant for explaining
the activities of WP3 focused on services dedicated to handling bias. The way in which datasets are distributed
could be different (e.g., for handling bias, datasets will be divided into a small reference dataset without bias
and a larger biased dataset). As an example, the ChestX-ray14 dataset includes metadata describing whether
the image is of a healthy or diseased chest, as well as the type of disease. Most of the data concern images of
healthy patients. We divide the dataset into two disjoint datasets: the first contains a large amount of data, with
a large majority of images of healthy patients, and simulates the dataset denoted Dy;,s.q. The second dataset
is smaller and balanced between the number of images of healthy patients and those with the disease under
study, and simulates the D,..; dataset.

The work plan for the initial phase of the development is described below:

1. Implement and test the methods on Open Data, with the following three potentials data sources (the
dataset descriptions are reported from Deliverable D2.1 below for completeness):

+ ChestX-ray14[111]: medical imaging dataset which comprises 112,120 frontal-view X-ray images of
30,805 (collected from the year 1992 to 2015) unique patients with the text-mined fourteen common
disease labels, mined from the text radiological reports via NLP techniques;

« NODEZ21 [112]:consists of frontal chest radiographs with annotated bounding boxes around nodules.
It consists of 4882 frontal chest radiographs where 1134 CXR images (1476 nodules) are annotated
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with bounding boxes around nodules and the remaining 3748 images are free of nodules and hence
represent the negative class;

» CheXpert [113]:a large dataset of chest X-rays and competition for automated chest X-ray interpre-
tation, which features uncertainty labels and radiologist-labeled reference standard evaluation sets.

2. Development of micro-service derived from the code developed/used in these experiments

3. Demonstration of the developed micro-service

5.5 Relationship with SECURED Use Cases

5.5.1 Questionnaire about fairness requirements

To collect in an organized way all the information related to the need of fairness in the Use Case, a questionnaire
has been prepared and shared with the Use Case providers. The questions included in the questionnaire were:

» Questions regarding interests for the developed techniques:
— Do you suspect any source of bias relative to the data (real-life phenomenon, experimental protocol,
data collection)?
— What could be the sensitive attributes of your data?

— What do you expect with the use of unbiased techniques in your use case?
* Questions regarding the data:

— Are some of your datasets shareable?
- Ifno

+ Do you know if public datasets (similar enough for our study) are available?
» What kind of data are needed? In which format?

— Could you describe the data pre-processing?
* Questions regarding the models:
— What are the tasks of your models (classification, regression, forecasting, segmentation, detection,
data generation, etc.)?
— Are the models learned available for sharing with us?
— If no, could you explain/provide the architecture and the training procedure?

— What are the current performances of the model (which performance metrics are relevant and what
are their scores)?

— Could you provide information on the model usage? Is there post-processing? Is the inference
performed in batch (on a group of several instances aggregated) or one by one?

— How Fairness services could interact with your ML models?

— Are there any specific requirements or limitations that we should be aware of when integrating with
your Al model?

5.5.2 Use Case 3

Despite the collection and analysis of the answers to the questionnaire are still in progress, we can anticipate
the results already analyzed from Use Case 3, since they are already available.
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Use Case 3 is focused on the data generation for education. There are various potential data sources, such
as images obtained from X-ray (e.g., mammography), with MRI (e.g., nervous systems), or with ultrasound
(e.g., brain). Further data types are time series datasets, e.g., ECG or CTG. The third possible data type is
textual data with Electronic Health Records. For imaginary and time series datasets, metadata are potentially
accessible. There are numerous open datasets available for all data modalities.

Use Case 3 can utilize fairness algorithms, because most input datasets are unbalanced: some categories of
population or symptoms are underrepresented. In the educational setting, a balanced sample is required for
the symptoms that are the target of a given lecture.

E.g., for pathological whole slide images, one can suspect bias because healthy cases are typically missing
from a real tissue bank. Due to the invasive nature of sample collection, healthy samples are never collected
intentionally. Random samples are expected from accidents or death cases due to other diseases. For educa-
tional data generation, the sensitive attributes can be any data that is unique or rare. The Unbiased Atrtificial
Intelligence solution is expected to create synthetic samples for outlier cases as well.

The Use Case (UC) 3 leader can provide data on their premises. In particular, it is possible to access the data
with remote protocols that ensure no data transfer across country borders. The legal conditions for data access
must be ensured by the technical partner which wants to experiment with the data.

Using these datasets require background knowledge, such as type of needed pre-processing, existing methods
to generate data without fairness consideration or performance metrics and benchmark results. Two options
can be followed during the development of the methods described: 1) Use classical GAN-variants architectures
and adapt methods explained in this section; 2) Use architectures provided within SECURED adapt methods
explained in this section.

In terms of evaluation, we will use Fairness discrepancy to measure the fairness of generated images. Metrics
like Fréchet Inception Distance will be used to measure the quality of images. Results will be assessed by a
comparative study of data generator without fairness and with fairness.

5.6 Conclusions

The preliminary activities of the task discussed in this section are summarized in Table 15. In WP3, further
architectures (e.g., Wasserstein generative adversarial network [114]) will be tested.

Main techniques explored Fair Classifier based on triplet loss
Existing or new method  Existing methods

Linked use case Under definition via a Questionnaire being answered
by use case providers

Table 15 — In-processing methods for classification and regression tasks status.

Based on the responses in a questionnaire, we are currently consider enriching and implement methods in
centralized context; and to implement methods in Federated Learning context. In Table 16, we provide the

Techniques explored  Fair Transfer Learning, Importance Weighting (Existing methods)

Linked use case + Potential use case: UC3, dedicated to data generation for education.
» Various types of data (images, time series, textual data).
+ Current target: X-ray images

Table 16 — Fairness for generative models status.

status of work on the fairness applied to data generation.

53



SECURED D3.1 Scalable Secure Multiparty Computation, Federated Learning and Unbiased Al

6 Conclusions

The first deliverable in Work Package 3 reports interim progress about the activities in the direction of the
processing flow of the SECURED library. The SECURED processing flow runs in four parallel tasks: three
dedicated to scaling up federated learning, unbiased Al and secure multi-party computation/homomorphic en-
cryption respectively, and a fourth dedicated to the implementation of these technologies in a library.

The Secure Multi-Party Computation / Homomorphic Encryption line of work focuses on scaling up the tasks
involved in computing on encrypted data. For Machine Learning applications, quantization is necessary and
two possible solutions (PTQ and QAT) are in the early stages of testing for the libraries and use cases that are
of interest to the SECURED project. Further results have been reached with the software selections, and the
approach to be followed in the common library have been sketched. Further, to identify targets for the accel-
eration, we focused on Homomorphic Encryption and we explored the bottleneck of components of selected
libraries and the overhead of the encryption computation over plaintext one for representative tasks.

Concerning Federated Learning, we have carried out a careful risk analysis that served us as base for defining
the selection criteria for the choice of the FL library to be used in the SECURED project. The Flower library as
been selected based on these criteria. In the next month of the project, the approach that we used to derive
the selection criteria will also be the base for the selection of the FL parameters to be used in the SECURED
Library.

Regarding Unbiased Artificial Intelligence, with the development of the project, we have identified fairness as an
highly relevant property for the SECURED use case and applications. To this end, we carried out a first analysis
on Fairness for generative Al and we have developed a plan for integrating fairness into SECURED. To have a
better understanding about the need of Fairness in the use case, we have prepared a questionnaire that has
been proposed to all the use case leader. The available answers to this questionnaire have been reported and
discussed.
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