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1 Executive Summary

Data management has grown more difficult in an era where data is both more easily accessible and more
valuable than ever. This is especially true when handling sensitive data subject to stringent data protection
regulations like the General Data Protection Regulation (GDPR). This problem is nowhere more apparent than
in health data, which is considered to be highly private. The SECURED project is trageted at scaling up the
secure processing, anonymization and synthetic generation of health data. As part of the project, Work Package
2 (WP2) is specifically aimed at the design and implementation of techinques for the anonymization of data
(T2.1); the validation of anonymization through re-identification attacks (T2.2); the augmentation of data through
synthetic generation (T2.3); and the implementation and integration of the above components into a coherent
and cohesive software library (with hardware accelleration suppport where warranted).

This deliverable, D2.1 - Interim report on data anonymization, de-anonymization and synthetic data generation
techniques, tools and services, provides a detailed summary of the current status of WP2 and related tasks,
and describes the interim results of the SECURED project in the design and development of anonymization,
de-anonymization and synthetic data generation techniques for health data.

In details, this deliverable presents:

• A brief introduction to the WP and the underlying Data Flow of the SECURED design, which, together with
the Processing Flow addressed in WP3, underpins the SECURED technological and innovation process.

• A detailed description of the data types and dataset that have been identified as useful in the design and
development of the WP techniques, both originating from open data and from partner institutions in the
SECURED consortium.

• The status of the current work on the development of anonymization solutions for health data being in-
vestigated as part of T2.1, lead by ATOS.

• A description of the de-anonymization attack techniques and related data types that have been identified
as useful in the development of an assesment strategy for the re-identification risk of anonymized datasets
(T2.2, UCC).

• The current research lines and status of the synthetic data generation techniques that are being re-
searched as part of T2.3, lead by BSC and contributed by BME, Thales and ICCS.

• An early overview of the development of the software library implementing and integrating the WP2 tech-
niques, and an assessment of where hardware accelleration may be required (T2.4, UvA).

This deliverable, hence, serves as a reference on the direction of WP2 as well as a summary of the current
status and results of the SECURED project.

1.1 Related documents

• SECURED Deliverable D4.1 - State of the Art and initial technical requirements

• SECURED Deliverable D3.1 - Interim report on Scalable Secure Multiparty Computation, Federated
Learning and Unbiased AI techniques and tools

• SECURED Deliverable D1.2 - GDPR and Ethics Project Guidelines

• SECURED Deliverable D1.6 - Data Management Plan

Also of interest:

• Directorate-General for Health and Food Safety - Proposal for a regulation - The European Health Data
Space (COM(2022) 197/2), 3 May 2022
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2 Introduction

SECURED is aimed at providing a platform and architecture for the secure, trusted, efficient, decentralized and
cooperative processing of health data. For this purpose, a number of techniques are being investigated, opti-
mized and tested, in the domains of secure computation, data anonymization (and anonymization assessment
via pre-emptive de-anonymization), as well as the generation of new, high quality and private synthetic data.
The techniques are being implemented as part of a library providing the tools for the secure interconnection
of EU health data hubs, the health data analytics research community, health application innovators (such as
e-health SMEs) as well as end users, ultimately enabling health datasets to be shared and made available
across Europe. The SECURED approach follows two parallel, independent yet interacting flows to innovation,
the data flow and the processing flow. This deliverable is focused on the former, while a separate parallel deliv-
erable (D3.1 Interim report on Scalable Secure Multiparty Computation, Federated Learning and Unbiased AI
techniques and tools) focuses on the latter.

Figure 1 – The data flow is an integral part of the SECURED architecture and concept.

The SECURED data flow, visualised in Figure 1 and implemented in the project Work Package 2 (WP2), is
targeted at securing health data by applying appropriate privacy-preservation techniques, with a specific focus
on anonymization and de-anonymization, as well as synthetic data generation. The utimate goal is twofold: first,
to enable stakeholders that generate and hold health data (such as hospitals, healthcare facilities, as well as EU
health data hubs) to properly anonymize their datasets, using novel anonymization techniques whose efficacy
can be validated through new de-anonymization technologies, both developed by SECURED; and secondly to
augment the datasets through novel mechanisms for privacy-preserving synthetic data generation, in order to
generate sufficient volume for training artificial intelligence and machine learning models, as well as performing
other data analyses.

With respect to the first objective, SECURED is developing a suite of novel anonymization tools (Section
4) as well as an anonymity assessment mechanism that can validate the anonymization by performing de-
anonymization attacks (Section 5). This assessment is targeted at ultimately identifying a de-anonymization
risk metric that can intuitively convey the level of protection offered by the anonymization. This could be used,
for instance, in a setting where specific privacy requirements are to be met: if a given anonymized dataset fails
to reach a certain threshold determined by the data owner, the anonymization process can be repeated with
different parameters and/or techniques.

In relation to the second objective above, privacy-preserving synthetic data generation techniques are being
developed in SECURED (Section 6), in order to leverage and augment health data. This is fundamental in
two instances: where an (anonymized) dataset is insufficient in volume to be useful in the construction of a
machine/deep learning model, to generate additional meaningful data; and where a dataset cannot be shared
or transfered, but its fundamental feature can be extracted to produce related but private synthetic data to be
used for further analysis.

The techniques produced by the SECURED data flow in the project Work Package 2 are being implemented in
a library (Section 7) which, combined with the complementary library for secure computation and private data

12
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analysis, will provide the required tools to (de-)anonymize and synthetize, as well as securely share, process
and analyze health data.

Ultimately, the end outcome of the SECURED data flow is enabling the generation and sharing of unbiased,
anonymized actionable datasets. This will be achieved, in part, through the SECURED Innohub, a privacy-
enhancing platform that will provide tools, services, and overall support to stakeholders in the healthcare do-
main, including researchers, innovators or health data users, as well as EU data hubs across Europe, thus
enabling them to reap the benefits of accurate data analysis while preserving the privacy of the data, pro-
cessed in a distributed and private manner. The SECURED hub will promote collaboration among parties by
acting as a one-stop collaboration platform for stakeholders.

2.1 Structure of the document

This document provides a snapshot of the progress of the SECURED project on the stated objectives described
above. The text is organised as follows: in Section 3 the data types and sets that will enable the development
and validation of the technologies produced in the data flow are presented. Sections 4, 5 and 6 present the
anonymization, de-anonymization and synthetic data generation technologies being developed, respectively.
In Section 7 the current state of development of the library where the technologies will converge is discussed.
Finally, Section 8 provides conclusions and an overview of the way forward towards successful completion of
the work in WP 2.

13
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3 Health data types and datasets

Data is a key component in modern Healthcare organizations, as it is the tool for the healthcare professionals
to analyze and diagnose patients. Moreover, the rise of usage of Machine Learning, specially Deep Learning,
has shown the possibilities of using medical data to assist the healthcare professionals in their tasks [1]. Typ-
ically, each hospital can be considered a silo that contains data from their patients. However, the European
Health Data Space promoted from the EU commission promises to break this problem by harmonizing and in-
terconnecting all the data. With this kind of approach, medical research can advance faster as the data can be
accessed in a more easy way. This has risks, as privacy has to be assessed and preserved. For this reason,
under the SECURED project, we aim to provide tools to make use of the data without leaking any sensitive
information. Knowing which data is going to be used and the problem that is attacked with it is important as it
conditions the approaches and measures to secure the processes.

In particular, the work performed under Work Package 2 (WP2) is tailored to the data types that are available,
as the techniques presented in this document are not agnostic of the data they are treating. Therefore it is
important to define which are the data types that are going to be anonymized, re-identified or synthetically
generated. In the following subsections we define the data types that we aim to use in SECURED and the
current datasets available, both open data and private from the use cases within the consortium.

3.1 Data type definition

In this section we present the different data types considered within the scope of the SECURED project, com-
plementing the information provided in Section 5.1 of deliverable D4.1 State of the Art and initial technical
requirements and the datasets found in D1.6 Management Plan.

3.1.1 Genomic data

Genomic data, a cornerstone of contemporary health research, encompasses crucial information encoded
within genetic markers or Single Nucleotide Polymorphisms (SNPs). These genetic markers play a pivotal role
in identifying specific disease-related characteristics, serving as molecular signposts that guide researchers
in understanding the genetic underpinnings of various health conditions. The significance of genetic markers
lies in their ability to pinpoint unique variations in an individual’s genetic code, offering invaluable insights into
disease predispositions and susceptibilities.

The extraction of phenotypes from genomic data further enhances the depth of analysis. Phenotypes, observ-
able traits resulting from the interplay of genetic and environmental factors, provide a tangible link between
genetic markers and the expression of specific characteristics. Unravelling phenotypic information from ge-
nomic data unlocks a wealth of potential insights, shedding light on the intricate connections between genetics
and health outcomes. This comprehensive understanding sets the stage for exploring vulnerabilities in de-
anonymization attacks, particularly identifying individuals based on their unique genetic profiles.

3.1.2 Medical image data

Medical imagery is usually a relevant piece of data for both healthcare professionals and medical data analists.
These images, usually formatted according to the DICOM standard, encapsulate detailed information from di-
agnostic procedures. Incorporating DICOM data extends the scope of analysis to encompass medical scans,
enabling researchers to correlate genetic and neurological findings with visual representations of anatomical
structures. We can find different modalities such as Histopathological Images, Mammograms, Magnetic Reso-
nance Imaging (MRI) or ultrasound imaging from different parts of the body.

Also, neuroimaging data emerges as a valuable source for exploration. This kind of imaging comes in both NIfTI
and DICOM formats, being NIfTI preferred by the neuroscience community [2]. The extraction of features from
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neuroimaging data becomes a focal point, allowing researchers to discern patterns intricately linked to genetic
markers and associated pathologies. Neuroimaging captures the brain’s structural and functional aspects, pro-
viding a unique perspective on the interplay between genetics and neurological traits. In this context, beacons
act as navigational indicators, spotlighting specific genetic features within the vast landscape of neuroimaging
data. Beacons guide attention to regions of interest and facilitate a nuanced analysis that intertwines genetic
signatures with neuroimaging patterns.

3.1.3 Time series

Time series is a very common type of data in healthcare, as many sensors provide values of desired variables
to measure continuously.

For example, Electro CardioGrams (ECG) which measure the heart’s electrical activity over a specific duration
and Cardiotocographies (CTG), which measures the baby’s heartbeat along with the mother’s uterine contrac-
tions. Each data point in the time series corresponds to a specific time and contains the electrical voltage
generated by the heart during a particular cardiac cycle.

Following a similar structure to ECG time series, there is also telemetry from devices that measure breath.
These devices can measure variables such as O2 saturation or CO2 concentration that are useful to evaluate
the condition of a patient.

3.1.4 Electronic Health Records

Electronic Health Records (EHR) can be seen as the electronic version of the patients medical history. These
records are usually saved in the form of tables that contain all the information from the patients, from the demo-
graphics to the interventions and sickness that the patient has gone through. This kind of data encompasses
a potential benefit to healthcare systems as the data can be shared between hospitals to treat better a given
patient and also can help in research as those EHR can be used for new potential application in many different
areas such as personalized medicine.

3.2 Datasets

In this subsection we are covering, from the previous different data types, the datasets that we have detected
that are relevant for the project. This list includes an update from the datasets provided by the use cases in the
Data Management Plan (D1.6).

In order to keep track of the data relevant to the project, two different data registries have been created: open
data and project data registries. Both of them are intended to keep track on what data is available, how to
obtain it and who is using it inside the project. This last part is relevant as it provides a way of link the partners
that are using the same dataset and fosters collaboration between them. A summary of these two registries
is presented in Table 4, which show the potential datasets detected at the moment. Notice that the datasets
from the project have two identifiers: first is of the actual dataset and second is the identifier of the general
data collection defined in the Data Management Plan. Some of these datasets have already been explored
and being in use, such as the CSAW and InBreast open datasets. Regarding project data, the consortium is
currently working on how to establish the legal agreements between use case data and the interested partners.
As a first success case, the HNJ1 dataset is currently being in use for synthetic data generation. In other cases,
the work in the WP2 has started with open data as this data is from the start more accessible. However, this
open data is of the same modalities that the use case data have as the idea is to start with open data and then
fine tune the methodology when the use case data when it is accessible for the partners interested on it. These
agreements have to take care of two different things:

• Ethics: usually taken care by the ethics board from the data origin and the partners from SECURED to
provide a description of the work to be done.

15



D2.1 - Interim report on data (de-)anonymization and synthetic data generation

Data type Dataset name Availability Process summary
Mammograms InBreast Open Request with signed contract [3]
Mammograms CSAW Open Website request [4]
Mammograms Optimam Open Website request [5]

Breast MRI Duke Breast Cancer MRI Open Direct download [6]
Lymph node Histopathologic scan PatchCamelyon Open Direct download [7]

Chest X-ray ChestX-ray14 Open Direct download [8]
Chest X-ray NODE21 Open Direct download [9]
Chest X-ray CheXpert Open Direct download [10]

Genomic data St. Jude genomic datasets Open Request with signed contract [11]
Ultrasound vascular imaging data EMC-US/DS1 Project Internal agreement

MRI vascular imaging data EMC-MRI/DS2 Project Internal agreement
Sensor data from patients at home HNJ1/DS6 Project Internal agreement (Outside of GDPR)
Sensor data from patients at UCIP HNJ2/DS6 Project Internal agreement

Scanned whole slide colorectal images SEM-CRC/DS7 Project Internal agreement
Annotations for SEM-CRC SEM-CRC-TAG/DS7 Project Internal agreement

Mammograms SEM-MAMMO/DS7 Project Internal agreement
Electrocardiograms SEM-ECG/DS7 Project Internal agreement

Cardiotogography (Fetal heartbeat) SEM-CTG/DS7 Project Internal agreement
EHR for reimbursement SEM-TAB/DS7 Project Internal agreement

Genotyping arrays and clinical data JCLRI1/DS8 Project Internal agreement
Table 4 – Open and Project data

• GDPR and national laws: to be addressed by the legal teams of the data origin and the destination.
Notice that even if GDPR does not apply to a given dataset, national laws from the origin and destination
countries may still apply. For further reference, check D1.2 GDPR and Ethics Project Guidelines.

Regarding datasets that are provided by partners in the consortium, their availability is subject to data sharing
agreements being concluded between the dataset owner/originator and the partner institution(s). A number of
data sharing agreements are in place or are currently being negotiated.
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4 Data anonymisation techniques

The health sector generates several heterogenous data sources such as patient electronic health records
(EHR), laboratory tests and medical imaging for diagnosis, genomic data, device-generated medical and wellbe-
ing data, treatment and drug prescriptions or administrative data. The analysis of these data provides valuable
information for doctors, researchers and healthcare bodies for improving diagnosis, treatment and at the end
the healthcare services. Ensuring the security access to data and protect the patient privacy and data confi-
dentiality implies the treatment of these heterogeneous and huge amount of data applying different tools and
techniques. The use of cryptographic and anonymisation techniques helps preserve the privacy of patients’
health data. While health data treatment cryptographic techniques are covered by WP3, the anonymisation
techniques are covered by WP2 and namely in T2.1.

In the next subsections are provided details of the anonymisation tools and libraries that make up the building
blocks of the prototype of the SECURED anonymisation tool and the rational for selecting them. Then, an
initial architecture of this tool is depicted beside the envisaged deployment as microservices. Also, linked with
Section 3 Health data types and datasets, a short description of the data types to be used is provided. Finally,
a summary of the progress made for developing this anonymisation tool, including initial results and the next
steps are depicted.

4.1 Explored techniques

The objective of anonymisation process is to reduce the risk of re-identification while preserving data utility,
when personal and sensitive data are shared. Different privacy-preserving techniques, such as generalization,
suppression, and noise application, can maintain high privacy levels while impacting predictive performance.
T2.1 devoted to the data anonymisation started in June 2023, the activities performed until now are based
on the work done in D4.1 “State of the Art and initial technical requirements”. SECURED D4.1 [12] provides
an overview of the privacy models and anonymisation techniques which can be applied to different types of
datasets, both structured and unstructured, with a focus on respecting data usefulness and truthfulness while
safeguarding user privacy. The study of the state of the art made in D4.1, and the analysis of the strengths and
weaknesses of various anonymisation techniques, emphasizes the importance of combining multiple methods
to achieve effective privacy protection while maintaining utility. Beside this analysis, an overview of the current
open-source tools covering the privacy models and anonymisation techniques has been performed as well.
According to the preliminary evaluation of the different tools provided in D4.1, two of them, the DANS tool (from
now it will be named legacy DANS) and open-source Amnesia library, have been initially selected for providing
an initial prototype for SECURED project. The rationale for selecting them are based on the following aspects:
(i) providing at least k-anonymity and DP as privacy models, (ii) capable to manage different type of data,
covering those provided by the different use cases/pilots, (iii) possibility to integrate in an easy way and (iv) the
documentation is available and provide regular update of the tool/library.

Table 5 provides the properties the selected tools/libraries fulfil. Additional details are included in sections 4.1.1
and 4.1.2.

Table 5 – Properties of anonymisation tools: legacy DANS and Amnesia

Solution Privacy models/Techniques Type of data
covered

Integration Info Last update

Legacy
DANS

k-anonymity, l-diversity, t-closeness,
Differential Privacy

Structured Yes Yes 2022

Amnesia k-anonymity, km-anonymity, Differen-
tial Privacy, Masking.

Structured,
Unstructured:
DICOM, time-
series, genomic

Yes Yes 2022
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Others open-source tools and libraries are being considered such as µ-ARGUS, sdcMicro among others. These
tools and others which can fit with the SECURED project will be explored in a second stage of the project.

4.1.1 Legacy DANS

The Data anonymisation Service (DANS) is an enhanced anonymisation tool developed by the BDS RD Spain1

(Eviden2- an Atos group business), in the context of the CyberSecurityforEurope project3. This tool is based on
the open-source ARX library4, being designed as a modular solution offering enough flexibility to users for cus-
tomising the anonymisation process based on the user needs, handling large datasets. Provides k-anonymity
[13], ℓ-diversity [14] and t-closeness [15] privacy models. Additionally, it supports several anonymisation tech-
niques such as generalization, suppression, and micro aggregation. During the anonymisation process remov-
ing only the identifier attributes is not sufficient for reducing the privacy risk and maintain the data utility (the
more privacy protection the less utility reached, and the other way around). Thus, it is necessary to combine
different privacy models and techniques, with the aim to find an adequate trade-off of privacy vs utility, achieving
different level of privacy protection depending on the sensitivity of the data. In this way, legacy DANS is focused
on privacy quality but keeping the balance between the user-privacy preservation and the data utility for analyt-
ics. The graphical user interface (GUI) provided by this tool eases the execution of the anonymisation process
by users with low anonymisation knowledge. On top of that, it helps organisations to accomplish with data pro-
tection regulations such as GDPR or Data Act. Moreover, this tool can be applicable to other domains (finance,
insurance, eucation) than the health one. The main reasons for selecting legacy DANS are the following:

• The anonymisation library embedded in DANS tool provides several privacy models facilitating the au-
tomatic anonymisation of large datasets in the health domain. Currently legacy DANS is focused on
k-anonymity privacy model which assure that each element in the anonymised dataset will be indistin-
guishable from other k-1 elements in that dataset considering the quasi-identifier attributes. Moreover,
the use of l-diversity together with k-anonymity increases the privacy protection of the sensitive attributes,
preventing attribute disclosure. Beside these privacy models the addition of t-closeness and DP is ex-
pected.

• Able to manage large datasets in the health domain but can be used in other domains such as financial,
education or mobility.

• Is designed in a modular manner, facilitating the addition of new open-source libraries, to enhance the
type of data to be managed, including structured and unstructured data.

• Is offered in two-fold, as a java library to be embedded in legacy systems and as a microservice for being
deployed on the data provider premises. This aspect eases the integration with other services, helping
the adoption of this kind of tools by data providers for protecting data privacy.

• The original library is updated on a regular basis and provide available documentation [16].

4.1.2 Amnesia

The Amnesia open-source library has also been selected to be included into the SECURED anonymisation
toolset. It is focused on health data as well, providing k-anonymity and km -anonymity privacy models, using
generalisation or suppression mechanisms. Km-anonymity is a relaxed form of k-anonymity, requiring that each
combination of m quasi-identifier attributes must appear at least k times in the anonymised dataset [17], protect-
ing only from attackers knowing up to m values of the quasi-identifier attributes, providing a better information
quality, preventing identity disclosure.

1https://booklet.evidenresearch.eu/about-us
2https://eviden.com/
3https://cybersec4europe.eu/
4https://github.com/arx-deidentifier/arx
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The main reasons for selecting Amnesia are the following:

• Ease to integrate in an anonymisation framework , for using their functionalities through a ReST API.

• Provides k-anonymity, km-anonymity and allows to manage small and medium datasets and the possibility
to anonymise metadata of DICOM images.

• Provides privacy risk and utility information of the anonymisation process.

• The original library is updated time to time and provide available documentation.

4.2 Scaling up approach

The anonymisation toolset (from now named DANS 2.0) to be developed in SECURED project, is intended to
protect and preserve the privacy of personal and sensitive information by removing or modify identifiable infor-
mation avoiding the re-identification of the data subject, ensuring that the anonymisation process will maintain
the utility of the protected data for further analysis. DANS 2.0 is an enhanced version of legacy DANS, including
new open-source libraries (e.g., Amnesia library) providing additional properties.

For facilitating the implementation and deployment process of the DANS 2.0 and allow the adoption of new
open source anonymisation libraries, the design and development of this asset follows a modular design based
on a microservice approach. This modular design will support the scaling-up needs when big data analysis
is required. The different modules will be deployed as microservices, which will allow the addition of new
anonymisation techniques and privacy models in an easy way facilitating the deployment and scale-up of the
tool. Figure 2 depicts a high-level overview of the modular architecture.

Figure 2 – High-level view of DANS 2.0 microservice architecture.

The adoption of a microservices architecture approach provides several advantages for scaling up the anonymi-
sation tool:

• Decoupling: As each module is a self-contained element, the development (can be used different tech-
nologies for each module), deployment (CD/CI techniques can be applied) and maintenance of each
service is independent of the rest of modules, improving the overall performance.

• Each module can be scaled independently according to their needs.

• Resilience: The isolation of the services facilitates bug-fixing minimising impact on the overall process.
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4.3 Relation to datatypes and use cases

The use of the anonymisation tool on the different SECURED pilots has been discussed in several meetings
with pilot owners for analysing the utility of the anonymisation tool for protecting their data. As a result of
these meetings, the anonymisation tool DANS 2.0 will be applied for anonymise data in three SECURED use
cases, namely in pilot 2 “Telemonitoring for children”, pilot 3 “Synthetic data generation for education” and pi-
lot 4 "Genomic data". In the case of the Telemonitoring for children pilot, structured and time series data are
managed. Regarding the synthetic data for education pilot, the anonymisation tool will be restricted to some
scenarios, exploring the anonymisation of time-series data and metadata associated to electrocardiograms, the
anonymisation of electronic health records for reimbursement (structured tabular data) and the mammography
images scenario where the metadata associated to the images will be treated. In case of genomic data the
metadata associated to these data will be managed. Depending on the structure and type of data (structured,
semi-structured and unstructured data) different techniques and privacy models can be used for data anonymi-
sation, as described in D4.1 [12]. Following this guide, for time series datasets the k-anonymity and differential
privacy models can be used [18]. In the case of structured tabular data and associated metadata to images or
genomic data the same approach will be adopted. Based on these considerations, the selected anonymisation
tool (legacy DANS) and library (Amnesia) described in section 4.1.2, provide the required privacy models to be
used for anonymising these data. Additional details of the data to be used in SECURED are included in Section
3.

4.4 Progress

The progress made from the start of the T2.1 are basically the next:

• Design of the anonymisation component providing the architecture of the tool. This architecture is based
on the privacy-preserving requirements and the constraints of the SECURED pilots and health domain. A

Figure 3 – High-level view of DANS 2.0 architecture.

high-level architecture of DANS 2.0 (the SECURED anonymisation toolset) is provided in Figure 3. This
architecture implies several layers including:

– The anonymisation layer which comprises:
∗ The anonymisation libraries providing the different privacy models, such as k-anonymity, l-diversity

or Differential Privacy and the privacy-preserving techniques (micro-aggregation, generalisation,
sampling, masking, suppression, etc).

∗ The anonymisation support services comprises the I/O data, the data specification of how to
anonymise (classification of the attributes, parametrisation of the anonymisation methods to be
applied, etc.), the hierarchy builder, or the risk assessment services. Reports on the anonymi-
sation process can be generated also.
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– Storing layer: the anonymisation process rely on light data bases for allocating files on the data
provider infrastructure and for storing configuration settings, hierarchies, etc.

– An anonymisation manager for orchestrating the anonymisation process depending on the type
of data-source (structured, unstructured, or semi-structured data formats) or size (large or small
datasets) or the anonymisation tool to use.

– A public OpenAPI for accessing the ReST services. The GUI or trusted third parties can use this
API.

– A visualisation layer for users to access the different services. The offered Graphical User Interface
(GUI) facilitates to Low skilled users the performance of the anonymisation process.

• Design of the deployment of the tool DANS 2.0 (see Figure 2), considering the scalability of the asset and
the later integration with other tools of the SECURED project.

• Analysis of the initially selected anonymisation tools: Legacy DANS and Amnesia.

• Regarding the specific progress on Legacy DANS tool:

– Included persistency of database: database persistence is recommended when large datasets are
managed. Different databases (e.g., Postgres, MySQL, . . . ) can be used for this purpose.

– Checked and analysed updated documentation and functionalities of the basic ARX java library5.
– Updated tool with the latest version of opensource library (v3.9.1).
– Tested and fixing detected bugs after updating embedded library.
– Improved the exception management, fixed knowndetected bugs, cleaned the OpenAPI removing

old endpoints not needed anymore.
– Updated the l-diversity privacy model.
– Exploring new privacy models, e.g., t-closeness and differential privacy. Initial tests with existing

datasets and use case datasets (when available) are ongoing.
– Enhancing the docker deployment with several environment variables to ease the deployment on the

different pilots.
– Tested simple examples of available use cases’ datasets.

• Regarding the progress on Amnesia library:

– Analysed documentation and functionalities of the basic Amnesia java library6.
– Tested the last version (v1.3.3) of the open-source library with dataset by using curl calls7. Even Am-

nesia library contains code for managing DICOM files and apply differential privacy, some problems
arose during the initial testing phase. Additional work on this matter will be needed for leveraging
these functionalities.

– Defined a draft flow for anonymising datasets and retrieve an anonymisation report. Figure 4 depicts
the steps of the process: (1) Open a session needed for the whole anonymisation process, (2) Load
the dataset (accepting csv, xlsx, txt formats), (3) Identify the attributes (identifier, quasi-identifier,
sensitive) included in the dataset, (4) Create a hierarchy file, JSON format, for integer quasi-identifier
attributes, (5) Upload the hierarchy files associated with quasi-identifier attributes (age, dates, . . . ), if
they don’t exist a customised one can be generated, (6) Set hierarchies to quasi-identifier attributes
and k parameter, (7) After k-anonymising, initial results are obtained in a JSON format, (8) The
anonymised dataset can be retrieved depending on the different parametrisation, (9) Statistics and
data loss can be obtained for a given solution.

– Some constraints and limitations have been detected during the tests:
5https://github.com/arx-deidentifier/arx/releases
6https://amnesia.openaire.eu/features.html
7https://github.com/dTsitsigkos/Amnesia
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Figure 4 – anonymisation process for Amnesia.

∗ The hierarchy files used and created have different format and structure than the used in DANS
tool. It is necessary to analyse how to align this aspect.

∗ The hierarchy files initially cover integer and date attributes. String format is not considered.
∗ The anonymised attributes where the hierarchies are applied contains the associated code of

the range instead of range itself. This need to be analysed.
– Tested simple examples of available use cases’ datasets.

In the short term, the next points will be developed:

• The anonymisation results and statistics report to be stored on databases.

• Integrating new privacy models, e.g., t-closeness and differential privacy into legacy DANS tool.

• Create the first draft of the OpenAPI for Amnesia to be deployed as a microservice, based on the flow
described in Figure 4. Basically it contains the following endpoints: Init(): SessionId; LoadData (File
dataset, SessionId); CreateHierarchy (Hierarchy Parameters, SessionId); LoadHierarchy(File hierarchy,
SessionId); SetParameters (anonymisation Parameters, SessionId); anonymisation (SessionId); GetRe-
sult (SessionId): anonymisation file, statistic results.

• Create the first version of the amnesia microservice with basic functionalities (init, uploadFile, setParam-
eters, anonymise).

• Designing the first version of the public OpenAPI for DANS 2.0:

– LoadData: we can distinguish three main kinds of data: data to be anonymised, data anonymised
and hierarchical data to be used in an anonymisation process. Data to be anonymised are temporarily
stored in database if big size, or just kept on memory if small size. Data conforming a generic
hierarchy can be stored in database for later use.

– CreateHierarchy: Initially predefined hierarchies will be used for anonymisation.
– Anonymise: The datasets will be anonymised according to a very detailed specification of how the

user wants to anonymise their data (classification of attributes, privacy and generalization models,
parametrization of each privacy model to be applied, and any other configuration).

– GetResults: apart from the anonymised dataset, a statistical report can be retrieved for a given
anonymisation. Such report plus a thorough analysis of the anonymised data, help the user to tune
the anonymisation process until she gets a data set useful for her needs.

In the medium term the following points will be covered:

• The selected tools and libraries will test all the proper datasets used in the related use cases e.g., time-
series datasets, metadata for DICOM files and genomic datasets.

• Work on km-anonymity model through Amnesia.

The updated design of the GUI is postponed to the next stage once the prototype is delivered and a stable
anonymisation process is defined.
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5 Data de-anonymization/re-identification techniques

The need to protect the confidentiality and integrity of health information has given rise to research on de-
identification or anonymization techniques, procedures that make data anonymous and protect individual iden-
tities while maintaining the usefulness. Conversely, de-anonymization, or re-identification, enables the uncov-
ering the original identities through anonymised data. The latter techniques are used by attackers to try and
extract sensitive information from anonymized datasets, but can also be used constructively by dataset owner
to assess the efficacy of anonymization techniques being applied to their data. This dynamic interplay between
anonymization and de-anonymization necessitates careful exploration and investigation.

Anonymization plays a pivotal role in safeguarding the privacy and public confidence in health research, as
ongoing efforts to anonymize health datasets are witnessing a consistent increase [19], yet anonymization in
itself is not always sufficient to ensure long-term privacy, and hence maintain public confidence in health re-
search. Therefore, comprehending the potential weaknesses and deficiencies present in de-identified datasets
is crucial for enhancing data privacy. De-anonymization or re-identification, in this context, serves as a valu-
able mechanism for locating and fixing vulnerabilities that might still exist despite well-meaning anonymization
attempts.

5.1 De-anonymization techniques

The de-anonymization research efforts that constitute the core of Task 2.2. The task will focus on the datasets
described in Section 3, in line and in collaboration with Tasks 2.1 and 2.3.

Electrocardiogram (ECGs) data, which record the heart’s dynamic electrical activity, are essential for improving
cardiac diagnosis and comprehending cardiovascular health. ECG datasets, which consist of time series data
indicating voltage variations during particular cardiac cycles, present difficulties in maintaining patient privacy.
To reduce the risk of re-identification, a specific focus on anonymization is required because every data point
in the temporal series has the potential to be an identifier. The quantification of re-identification risks through
the design of attacks is a contribution of Task 2.2, by performing de-anonymization in the process of improving
the privacy afforded by anonymization.

Correspondingly, Electronic Health Records (EHRs) constitute a fundamental component of contemporary
healthcare, comprising a thorough documentation of a patient’s medical background and prescribed medical
treatments. Though the sensitive nature of this data raises serious concerns regarding patient privacy and the
possibility of de-anonymization threats, integrating EHRs into health research offers profound insights.

Another vital component of modern health research is genomic data, which provides deep insights into the
complexities of human biology, disease susceptibility, and possible strategies for treatment. The human genome
has vast information that can be used to improve personalised medicine, target specific treatments, and better
understand how genetics affect health outcomes. However, maintaining privacy while utilising genetic data
presents significant challenges due to its fundamental sensitivity.

The increasing availability of sensitive health information heightens privacy risks, requiring stronger anonymiza-
tion methods and, in parallel, the evaluation of those methods through re-identification attacks. The decision
to concentrate on ECGs, EHRs and genomic data stems from their availability, sensitivity, and rich information
content, offering a compelling opportunity for potential de-anonymization attacks. This investigation aims to
unveil the challenges in genomic data anonymization, emphasizing the critical need for privacy safeguards in
health research.

In the following we describe the avenues for de-anonymization attacks that have been identified as the most
promising for each of the data types above. Due to the ad-hoc nature of de-anonymization attacks, each
technique may or may not be successful for a given dataset, and will need to be evaluated and fine-tuned
individually to attack targets (the test datasets to be used in the research). As such, the final results of the
research and eventual outcomes of T2.2 are subject to a high degree of potential future change (in terms of
techniques used and investigation directions) during the execution of the research, even when compared to
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other technical research tasks. In other words, in order to successfully attack anonymised datasets, one must
remain flexible as to what techniques are used, and as such the techniques proposed below are more of a
strarting point than a well-defined roadmap.

1. Advanced De-anonymization Techniques for ECG Data:
With its distinct time series characteristics, ECG data presents a prime target for de-anonymization at-
tacks. Specialized algorithms like Dynamic Time Warping (DTW) [20] [21] and machine learning meth-
ods such as Support Vector Machines (SVMs) are instrumental in identifying unique physiological pat-
terns in ECG signals. The challenge intensifies when comparing fully identified ECG datasets with their
anonymized counterparts. To conduct effective de-anonymization, techniques such as Recurrent Neu-
ral Networks (RNNs) LSTM [22] [23] [24] for example, and Convolutional Neural Networks (CNNs) are
employed for their proficiency in signal processing and feature extraction. These methods enhance the
ability to detect and match identifiable markers within ECG data, thus facilitating the re-identification of
individuals from datasets [25]. The integration of these approaches underlines the sophisticated nature of
ECG data de-anonymization, bridging the gap between complex signal patterns and identifiable personal
information.

2. Electronic Health Records (EHR) - Vulnerabilities and De-anonymization Approaches:
Electronic Health Records (EHR) are a goldmine of personal health information, making them suscep-
tible to de-anonymization attacks. These attacks exploit the rich, multidimensional nature of EHR data
[26], which includes patient demographics, clinical history, laboratory results, and more. Techniques for
de-anonymization in EHR data encompass a range of machine learning algorithms, including clustering
for pattern recognition and anomaly detection, decision trees for dissecting hierarchical data structures,
and neural networks for extracting complex interrelations among diverse data points. The utilization of
NLP techniques also in interpreting unstructured data, such as clinical notes. By correlating de-identified
EHR data with external datasets, attackers can re-identify individuals through unique health patterns or
anomalies. Protecting EHR data requires an understanding of these methods and the implementation of
robust anonymization techniques.

3. Significance of Genetic Markers and Extraction of Phenotypes:
De-anonymization in genomic research involves using genetic markers, like Single Nucleotide Polymor-
phisms (SNPs), to link genetic traits to diseases. Techniques such as Hidden Markov Models (HMMs) and
machine learning, including Support Vector Machines (SVMs), are crucial for interpreting these patterns
for identifying individuals. Similarly, extracting phenotypes from genomic data is key, using methods like
clustering algorithms, t-SNE, and deep learning models like RNNs and LSTMs, to link observable traits
with genetic variations.

Genome-Wide Association Studies (GWAS) and Whole Genome Sequencing (WGS) are instrumental
in associating genetic variants with specific traits, using statistical methods and machine learning for
precision. In de-anonymization, variant calling identifies unique genetic markers, and pathway analysis
elucidates how genes contribute to diseases, crucial for re-identifying individuals from anonymized ge-
nomic data by understanding the intricate genotype-phenotype relationships.

4. Neuroimaging Data - Genetic Associations and Pattern Analysis:
Our discussion primarily focuses on raw images; however, this doesn’t preclude us from addressing ran-
dom forests (RFs), given that RFs are typically employed for structured data including metadata. There-
fore, in this context, applying RFs to raw images necessitates feature extraction to identify pertinent fea-
tures. This implies that images must undergo preprocessing to extract these relevant features.
Neuroimaging data reveal complex connections between genetic markers and brain characteristics, cru-
cial for de-anonymization attacks. Techniques like Hidden Markov Models (HMMs) capture brain feature
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dependencies [27], while machine learning algorithms, including Random Forests and Support Vector
Machines (SVMs) [28], classify neuroimaging patterns linked to genetics. Deep neural networks, such
as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), efficiently extract
complex patterns from neuroimaging data, elucidating the relationship between genetics and brain traits,
thereby aiding in the re-identification process.

5. Health Images and DICOM Data:

De-anonymization techniques apply to health imaging, particularly Digital Imaging and Communications
in Medicine (DICOM) data, in the larger context of health research. The potential for health photos to
disclose private medical information makes them significant. Convolutional neural networks (CNNs), in
particular, are frequently used in machine learning for feature extraction in health imaging. Architectures
like VGG (Visual Geometry Group) or ResNet (Residual Networks) prove effective in discerning patterns
and abnormalities within medical images [29]. Image segmentation algorithms, such as U-Net, contribute
to isolating regions of interest within health images. These methods allow for spotting trends and irregu-
larities, improving the attacker’s capacity to associate particular photographs with particular people. Deep
learning methods highlight the susceptibility of de-identified health data to sophisticated attacks and aid
in the detailed interpretation of health imagery.

6. Utilizing Beacons in Genetic and Health Data De-anonymization:

Beacons serve as crucial markers in genomic and health research, indicating specific genetic or health
traits. These repositories, containing data on genetic marker frequencies or health patterns, are instru-
mental in de-anonymization attacks. By cross-referencing de-identified data with beacon databases, tech-
niques like machine learning and deep learning algorithms [30] identify unique features, highlighting the
vulnerability of de-identified data. Algorithms such as probabilistic models, decision trees, and ensemble
methods like Gradient Boosting or Random Forests are used to analyze beacon responses, enhancing
feature identification. Additionally, graph-based algorithms, including PageRank, help reveal complex
interconnections within beacons, adding depth to the de-anonymization process. In beacon systems,
which respond with the presence or absence of specific genetic variants, graph-based algorithms can
analyze the network of responses to identify critical markers. Mapping the relationships between genetic
markers or health traits as a graph helps in identifying which markers or traits are most crucial for dis-
tinguishing individuals. This integration of diverse algorithms demonstrates the sophisticated nature of
de-anonymization, especially when datasets are linked to external repositories. [31]

5.2 Re-Identification attacks

In this section, we outline the specific de-anonymization attacks that have been identified as the most promising
to be attempted on the target datasets, in order to determine their susceptibility to each given attack route. The
focus is on membership attacks, inference matching attacks, attribute inference attacks, and linkage attacks.
These attack strategies are selected based on a preliminary analysis of the potential vulnerabilities identified
in the genomic, neuroimaging, and other health data under consideration. We fully expect only some of these
attacks to be successful against some of the datasets: to imagine the opposite would be to essentially expect
the current anonymization techniques to be utterly and completely broken, which clearly is not the case. T2.2
is focused on uncovering yet unidentified vulnerabilities that are likely to be present in some techniques against
some types of attacks, with the purpose of proposing countermeasures.
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5.2.1 Membership attacks

Membership attacks aim to ascertain whether a specific individual’s data is included in a dataset, even after
anonymization. Our research focuses on genomic data, utilizing variant calling algorithms such as GATK or
Samtools for Whole Genome Sequencing (WGS) data [32]. Identified genetic variants undergo annotation with
tools like ANNOVAR or VEP to understand their functional impact on genes and phenotypes. The process
involves:

• Variant Calling using GATK or Samtools.

• Functional Annotation with ANNOVAR or VEP [33].

• Identification of Unique Genetic Identifiers

Algorithmic approaches include Maximum Entropy Models, as demonstrated in [32], using predictions from
de-identified WGS to match with phenotypic and demographic information. This facilitates a comprehensive
membership attack, assessing whether a specific record corresponds to an individual.

5.2.2 Inference attacks

Inference attacks, encompassing both Membership and Attribute Inference, involve the aggregation of informa-
tion to deduce specific details about individuals within a dataset [34]. This process often incorporates statistical
analyses, machine learning, or data linking techniques to infer personal data from the available dataset.

In the context of genomic data, the inference-matching attack unfolds with a strategic focus on predicting sen-
sitive attributes and uniquely identifying individuals. Employing algorithms such as Maximum Entropy Models,
Likelihood Ratio Tests, and Probabilistic Models, this attack delves into the reconstruction of individual genomes
using clustering techniques, revealing distinctive genetic markers. The utilization of beacons becomes pivotal,
with queries and clustering-based algorithms contributing to genome reconstruction. The [31] research delves
into two attack strategies: Query Inference (QI) and Genome Inference (GI). QI attacks use Linkage Dise-
quilibrium (LD) to infer beacon responses from SNP pairs, while GI attacks apply high-order Markov chains
with beacon queries to reveal hidden SNPs. Key technical aspects encompass variant calling algorithms like
GATK or Samtools for genetic variant identification, functional annotation tools like ANNOVAR or VEP, and the
clustering of similar genetic markers for reconstruction.

The Attack is relevant for neuroimaging data in identifying discriminative features related to genetic markers and
associated pathologies. Convolutional Neural Networks (CNNs) take the lead in extracting features from neu-
roimaging data, emphasizing patterns linked to genetic traits. Matrix analysis, employing score-based sampling
methods, aids in pinpointing discriminative features. External data integration further enhances the attack’s
matching capabilities, exploring intersections with external sources like beacons. The technical intricacies en-
compass the application of CNNs for feature extraction, matrix analysis for discriminative feature identification,
and the synergy of external sources for comprehensive matching.

Beyond genomic and neuroimaging, the Inference Matching Attack extends its reach to general health data
(time series) like in [21], or DICOM files. In the last scenario, the attack focuses on identifying patterns indica-
tive of unique attributes within health images. Image analysis techniques, potentially including Convolutional
Neural Networks (CNNs), play a pivotal role in feature extraction from DICOM files. Specialized processing
is undertaken to extract relevant features, emphasizing patterns associated with genetic markers or individual
traits.

5.2.3 Linkage attacks

Linkage Attacks involve a multistep process to establish connections between records from different datasets,
unravelling sensitive information across seemingly unrelated sources. In the context of genomic data, adver-
saries initiate the linkage attack by identifying shared genetic markers or traits across multiple beacons or
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genetic databases. The process often begins with extracting relevant features, emphasizing patterns indicative
of genetic relationships.

• Feature Extraction: This step involves the identification of unique genomic features, markers, or pheno-
typic traits that are distinctive enough to be used as identifiers across datasets and discern which features
can most effectively link records across seemingly unrelated information pools.

• Correlation Analysis: Analyze correlations between genetic variants and traits for linking patterns, and
leveraging the inherent link between genetics and phenotypic expressions to trace and establish identities.

• Probabilistic Matching: Use probabilistic techniques for connections based on allele frequencies and
shared traits as Bayesian networks and Hidden Markov Models (HMMs) are powerful in modeling the
probabilistic relationships between genetic markers. This method stands out for its reliance on mathe-
matical probabilities to make inferences [27], thereby amplifying the precision of the attack strategies.

• Data Integration: Synthesize information and accommodate variations for a comprehensive profile. By in-
tegrating information from diverse datasets, attackers can construct comprehensive profiles of individuals,
significantly increasing the risk of privacy breaches.

• Pattern Recognition: Employ advanced algorithms for subtle connections, contributing to re-identification.
DL networks ( CNN for image-based phenotypic data as an example) or ensemble methods like Random
Forests, are used to detect complex patterns and associations in the data.

5.2.4 Methodologies and attack overview:

Our review highlights a variety of methodologies employed in de-anonymization attacks, focusing on key areas
such as ECG data, EHR data, and genomic data. This overview, while not exhaustive, aims to shed light on
the strategies and techniques that have been explored in the research:

• ECG Data:

– Pattern Recognition Attack: Employ LSTM [24] networks to identify unique ECG patterns [23].
– Temporal Matching Attack: Use Dynamic Time Warping (DTW) [20] for matching ECG data with

identified datasets [35].
– Feature Correlation Attack: Apply SVMs to correlate ECG features with personal identifiers.

Basic scenarios:

1. Heart Rate Variability Analysis:
– Dataset includes anonymized heart rate variability metrics in ECG recordings.
– Attack: We assume an adversary’s capacity to access supplementary data (Leaked Health

Records and publicly available information - Social media and health blogs), then he compares
these health data to the the extracted patterns to match individuals (The adversary’s ability to
obtain the external knowledge determines the actual risk).

2. Identification of Cardiac Conditions:
– Anonymized ECG data shows waveform patterns indicating cardiac conditions.
– Attack: Attacker matches these patterns with known disease profiles for re-identification.

• EHR Data:

– Pattern Association Attack: Identify patterns in EHR data like medication history and diagnostic
codes.

– Cluster Analysis Attack: Use clustering algorithms to identify unique patient groups.
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– Feature Linking Attack: Link anonymized EHR data with public health datasets [26].

Basic Scenarios:

1. Medication and Diagnosis Correlation:
– Dataset includes anonymized records with medication and diagnosis codes.
– Attack: Adversary correlates this data with public health databases to identify patients.

2. Hospital Visit Patterns:
– Anonymized EHR data shows patterns of hospital visits.
– Attack: Attacker uses pattern recognition to match visit patterns for re-identification.

• Genomic Data:

– Membership Attack: Researchers focus on reconstructing individual genomes using clustering
techniques [30]. Beacon queries are employed, with a Clustering-Based Algorithm for Genome Re-
construction Attack [30], and queries are further used for membership detection [31].

– Inference Matching Attack: Techniques involve identifying discriminative features using matrix
analysis and leverage-score-based sampling methods [28]. Reconstruction clustering techniques
are used for inference, associating genomic findings with personal information [30].

– Attribute Inference Attack: Pathway analysis is employed to assess how sets of genes contribute
to biological pathways [32]. Integrative genomic analysis combines WGS data with other omics data
for a holistic view [32].

Basic Scenarios:

1. Genetic Marker Identification:
– The released dataset includes genomic sequences and information about the presence or ab-

sence of specific genetic markers associated with rare diseases.
– Attack: An adversary with access to external genetic databases or publicly available genomic

datasets may attempt to identify unique genetic markers in the released dataset.
2. Inference of Disease Predispositions:

– The anonymized genomic data contains information on variations in certain genes linked to an
increased risk of particular diseases.

– Attack: An attacker could cross-reference the genomic data with publicly available information
on disease-gene associations to infer the potential disease predispositions of individuals in the
dataset.

• Health Data in General:

– Attribute Inference Attack: Sensors general health data is subjected to feature analysis and clas-
sification for identification. Similarity-based attacks on general health time series combine blood
volume pulse, electrodermal activity, body temperature, and acceleration data [21].

Basic Scenarios

1. Specific Medical Condition Inference:
– A hospital releases de-identified aggregated health data (without personal identifiers) but in-

cludes information on the prevalence of certain medical conditions.
– Attack: An adversary could attempt to link this released data with external information sources

(publicly available data, previous leaks, or even other de-identified datasets) to identify individu-
als and associate them with specific medical conditions.

• Neuroimaging Data:
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– Inference Matching Attack: CNN mostly are applied for advanced image analysis in neuroimaging
data, focusing on extracting features and identifying discriminative patterns critical for re-identification.
This method leverages external sources, such as publicly available neuroimaging databases and ge-
nomic databases, to enhance matching accuracy. The integration of external genomic information
or detailed phenotypic data with neuroimaging patterns allows for a precise matching process. The
promise of this approach lies in its ability to exploit the rich, yet subtle, information contained in neu-
roimaging data, which, when combined with complementary datasets, can significantly improve the
accuracy of re-identification attacks. [28].

5.3 Samples of attack plans

In the landscape of digital health information, understanding the potential vulnerabilities and methods employed
in de-anonymization attacks is crucial for developing robust privacy protection measures. Below, we outline a
series of potential attack plans targeting various types of health data. While we will explore the identified attack
scenarios, it is expected that only some of these scenarios will lead to successful re-identification, and on some
given datasets. In the context of a risk-based approach, such as the one taken by the GDPR, not only the
success of a specific attack on a given dataset, but also the overall probability of successful attacks on a data
type should be evaluated.

5.3.1 ECG Data de-anonymization attack:

Table 6 – ECG Data De-anonymization Steps

Step Description
Data Acquisition Collect ECG data, both identified and anonymized, for analysis.
Feature Extraction Transforms the preprocessed ECG signals into a structured features

(QRS detection, heart rate variability), where the model will analyze
these to capture and learn distinctive ECG signal patterns associated
with individual identifiers.

Pattern Analysis Use LSTM, DTW, and SVMs for capturing ECG signal patterns and indi-
vidual identifiers.

Model Training Deep learning models are trained on labelled data to recognize these
patterns. This step differentiates from the initial analysis by focusing on
constructing predictive models capable of identifying similar patterns in
new, anonymized datasets, thus enabling the re-identification process.

Re-identification Apply models to anonymized data for matching and re-identification, con-
sidering unique ECG characteristics.

Outcome Successful identification of individuals from anonymized ECG datasets,
highlighting the vulnerability to sophisticated techniques.
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5.3.2 EHR Data de-anonymization attack:

Table 7 – EHR Data De-anonymization Steps

Step Description
Pattern Association Use data mining to identify unique EHR patterns like medication history

or diagnostic codes.
Cluster Analysis Separate out the likely target records for re-identification, use cluster-

ing algorithms to divide the EHR data into groups according to common
health conditions, treatment outcomes, or demographic data (isolating
potential target records for re-identification)

Feature Linking cross-referencing the clustered anonymized EHR data with publicly
available health datasets or leaked records to find matching profiles.

Medication-Diagnosis Cor-
relation

Correlate medication prescriptions with diagnosis codes to identify pa-
tients.

Hospital Visit Patterns Examining patterns of hospital or clinic visits that are recorded in the
EHR data and contrasting them with data from any accessible datasets
(insurance claim databases, health forums) to match with known patient
histories for re-identification.

Outcome Successful re-identification using pattern association, clustering, and
feature linking techniques.

5.3.3 Genomic data de-anonymization attack:

Table 8 – Genomic Data De-anonymization Steps

Step Description
Data Collection Obtain genomic data. Preprocess using genomic data tools.
Feature Extraction Extract features (e.g., SNPs) using tools like GATK, Samtools. Apply

PCA or t-SNE for dimensionality reduction.
Pattern Matching Use HMMs for identifying disease-related genetic characteristics.
Model and Decision Train ML models (Random Forest, Gradient Boosting) for pattern recog-

nition. Apply algorithms to unknown profiles for membership detection.
Membership Detection Employ clustering and beacon queries for genome reconstruction and

enhanced detection.
Outcome Identify specific SNPs, reconstruct genomes, infer identities, detect

memberships.
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5.3.4 Neuroimaging data de-anonymization:

Table 9 – Neuroimaging Data De-anonymization Steps

Step Description
Feature Extraction Preprocess data. Use CNNs to extract discriminative features and ap-

ply transfer learning for phenotype prediction (VGGFace for phenotype
prediction).

Clustering Analysis Apply matrix analysis and leverage-score-based sampling for clustering
brain signatures.

Matching Attack Use external data or beacons to match clustered features, evaluate re-
identification likelihood.

Outcome Identify unique neuroimaging features, integrate genetic data from bea-
cons for improved matching.

5.3.5 General Health data de-anonymization (sensors’ time series):

Table 10 – General Health Sensor Data De-anonymization Steps

Step Description
Data Collection Acquire sensor data (heart rate, steps, sleep patterns) from smart de-

vices (smartwatch in use case). Collect both identified and anonymized
datasets.

Feature Extraction Preprocess data to extract time series features. Use algorithms like PAA
(Piecewise Aggregate Approximation) for dimensionality reduction.

Time Series Analysis Apply time series analysis techniques like Dynamic Time Warping (DTW)
for pattern recognition and correlation.

Pattern Matching Use pattern matching algorithms to match anonymized data with identi-
fied datasets. Employ statistical methods to assess similarities.

Model and Decision Train machine learning models (e.g., Random Forest, XGBoost) to rec-
ognize and match patterns between datasets.

Linkage Attack Implement linkage attacks to connect anonymized records to identified
ones based on unique behavioral and physiological patterns.

Outcome Successfully link anonymized sensor data to identified records, or estab-
lish unique identifiers within the anonymized dataset.

5.4 Conclusion

In this Section, we have delved into the challenge of ensuring privacy in the health and GDPR age, specifically
focusing on the vulnerabilities inherent in anonymized neuroimaging, genomic, and public health data. This
exploration is crucial in the wake of increasing sophistication in data analysis techniques and the potential for
misuse.

This section explores the weaknesses in anonymised ECG, neuroimaging, genomic, and public health data,
showcasing a variety of datasets and possible attack strategies we aim to implement. The techniques being
explored include methods such as CNNs and HMMs. Beacons, which stand in for external data sources, can
be helpful for re-identification attempts.
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The described attack plans and scenarios highlight the significance of taking preventative action to safeguard
individual privacy in the context of health data by illustrating the multiple strategies used by adversaries.

A further contribution of this research, beyond engaging in direct attacks, is the analysis of probabilistic models
that estimate the risk of re-identification of a single individual in anonymized datasets.
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6 Private synthetic data generation techniques

Synthetic data generation aims to provide data that is statistically similar to the original data but does not convey
information from the original data. These techniques can produce data that is similar to the original, but not
completely equal to the original data which is promising as it would be possible to produce new data that could be
shared without providing any sensitive information from the original patients. However this is on-going debated
in the current state of the art as this data still needs to be checked regarding information leakage [36, 37]. In
this sense, there must be a balance between usability of the data and privacy and, depending on the modeling
techniques, the generated data might not be useful when the privacy is preserved [38]. This balance is a
challenge that we will be addressing in the SECURED project. On the other hand, synthetic data generation
can also be useful aside from the privacy preserving aspect, as it can be used to complement real data for
tasks such as training Machine Learning models, specially Deep Learning models, which require as much data
as possible to provide good and generalizable results.

As basis of this service we use the open source library MediGAN [39], which provides Deep Learning based
models to generate different health image modalities from different studies and datasets. Moreover, we are still
considering SVD [40] and Gretel [41] libraries for other data types such as EHR.

Going further, under this tasks we aim to offer a service that is able to generate the following data types:

• Mammographies

• Breast and Colorectal tissue

• Lung X-ray

• Fetal heartbeat series

• Respiratory series

• Missing slices from breast MRI

We aim to evaluate the first two image modalities within the Use Case 3 (Synthetic Data Generation for Educa-
tion) with healthcare professionals from the Semmelweis University. These two types of data were prioritized
as they were marked by the use case leaders as required for their case.

Given that there are no libraries yet to generate some of the types like the tissue data, we plan to develop new
methodologies to produce that kind of data. Following this line, the work performed under SECURED for private
synthetic data generation is directed in three different axes:

• Privacy: Provide data that does not leak any sensitive information and cannot be used to match the original
data.

• Improve generation: Advance in the state of the art by improving the quality of the generated data (i.e.,
utility for the use case, for example improving the accuracy of a model by augmenting the dataset) or new
data types that have not been completely explored.

• Functionality: Provide tools to the users that address specific requirements aside from general generation.

In the following subsections, these three axes will be explored with the following research lines (ordered by
current maturity):

• Privacy: Generation of data with Differential Privacy

• Improval: Cancer tissue generation

• Improval: Healthcare time series generation

• Functionality: Generation parametrization

• Functionality: Missing MRI scan slice generation
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6.1 Differential Privacy applied in generative models

Generative Adversarial Network (GAN) and its variants are a popular tool to generate data, e.g. images, time
series, etc. However, one common issue in GAN is that the density of the learned generative distribution could
concentrate on the training data points, meaning that they can easily remember training samples, in particular
due to the high model complexity of deep networks. Moreover, one common default of GAN is mode collapse,
when the generator generates data samples that are very similar or even identical.

It is a major concern when GAN are applied to private and/or sensitive data such as medical xray images.
Indeed, the concentration of distribution can reveal critical patient information.

There are several interests to consider GAN when considering Privacy issues. In a GAN, only discriminator has
access to sensivite data and only the generator is useful for the final users. Privacy can be introduced on the
discriminator and propagated to the generator thanks to nice properties of, among others, Differential Privacy,
explained in the Section 6.1.1. It allows to explore some Teacher-Students approaches as the ones proposed
in PATE-GAN [42], G-PATE [43] and GS-PATE [44].

6.1.1 Explored techniques

6.1.1.1 Differential Privacy and Rényi Differential Privacy

Differential privacy guarantees individual privacy in statistical databases. Intuitively, it corresponds to ensuring
that the output distribution of an algorithm won’t be significantly different considering the presence or absence
of one particular individual. An adversary with access to the algorithm won’t be able to learn about individuals,
but will only have access to the global knowledge of the algorithm among them, hence privacy is protected.
The Privacy budget is given by (ε, δ), which are illustrated in the Figure 5. ε is the equivalent of the bounded
ratio in Figure 5. It gives the albility to the algorithm to produce similar outputs distribution if the algorithm
has been trained with or without one instance. δ corresponds to a probability that the privacy protection fails
independently of the data considered. DP schemes are very popular because of the nice properties it allows in
the algorithm verifying DP, with among others:

• Composition property insures that we can apply several times a DP algorithm while being still differentially
private;

• Post-processing insures that a function can be applied to the outputs of a differentially private algorithm
while preserving the differential privacy;

• Robustness to auxiliaries features insures that whatever the data the attacker has, it does not create new
risk.

When δ = 0, the DP guarantee asserts that the probability of observing a bad outcome will not change (either
way) by more than a factor of eϵ whether anyone’s record is part of the input or not (for appropriately defined
adjacent inputs). Rényi differential privacy is an relaxation of pure ε-differential privacy. For the detail of the
meaning of the relaxation, the reader can refer to [45].

The simpler method to add differential privacy into a classic network training via an empirical minimization of loss
functions is the Differentially Private Stochastic Gradient Descent (DP-SGD) [46]. Indeed, this method keeps
the classic training process of a network, and ensures the differential privacy by adding noise and clipping the
gradients, i.e. by insuring that the norm of the gradients are bounded by the clip value, before the optimization
step. First this principle for gradient clipping was used to improve deep learning based model robustness. Here,
the idea is then to obfuscate the influence of each individual of the training dataset, which is exactly the idea
behind the definition of differential privacy seen previously. Given a clipping bound on gradients and a noise
distribution (in [46] they choose a Gaussian noise with variance proportional to the clipping bound), the main
training scheme is then, for each batch of samples :
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Figure 5 – Illustration of Differential Privacy.

1. Compute per-sample empirical loss and corresponding gradient;

2. Clip per-sample gradients to the minimum between the clipping value and their l2 norm;

3. Reduce gradients by computing the mean over samples;

4. Add noise to the reduced gradients;

5. Apply noisy reduced gradients through an optimization step.

6.1.1.2 Generative Adversarial Networks (GAN) and variants

In the GAN setting, the mapping between the data distribution and the chosen latent space (Uniform or Gaussian
noise) is modeled by a neural network, called generator. The main idea of GAN [47] is to introduce a second
neural network, the discriminator, only used during the training to do a competitive training. The discriminator
is a classifier trained to distinguish real and generated (fake) samples.

The adversarial training then consists in training the discriminator to be able to distinguish the output of the
generator (fake images) from the ones from the training dataset (real ones), while on the contrary training the
generator to fool the discriminator.

Note that, in practice, such training is really unstable, precisely due to this adversarial formulation: for instance,
the generator’s training requires to have a sufficiently efficient discriminator to avoid gradient vanishing.

To make a link useful for interpretation, we can cite the following work expressing the link between GAN training
and divergence minimization [48]. We intuitively want to have a generator able to model a distribution as close
as possible from the real one of the data distribution.

GAN training is often unstable. To limit this instability, some GAN variants have been proposed. For example,
Wasserstein-GAN (WGAN) [49] use Wasserstein distance that induces a weaker topology and so makes it
easier for a sequence of distribution to converge, which will then ease the unstable training of GANs.

Another alternative can been used when learning a generative model from labeled data. In this context, we
may want to control the modes of the generated data. For this purpose, GANs can be extended to a conditional
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formulation (cGAN) [50], where both the generator and the discriminator are given some extra information. It
will be category labels in our case, but can also be some external features for instance.

6.1.1.3 Differentially Private GAN (DP-GAN)

When trying to incorporate differential privacy into a variant of GAN model, a first simplest approach is to
directly use the DP-SGD method into the training. In GAN training, there are two adversarial models : the idea
of Differentially Private GAN (DP-GAN) [51] [52] is to ensure differential privacy via the discriminator, applying
the DP-SGD procedure during its updates.

Indeed, according to the post-processing properties, ensuring the differential privacy of the discriminator will
ensure the differential privacy of the generator, which is trained on its outputs. In [51] and [52], the choice
of applying DP-SGD to the discriminator instead of the generator is justified by an easiest computation of the
privacy loss, the discriminator’s architecture being often less complex (as its goal is to classify and not generate
realistic samples), and it’s the only one to access real sensitive data.

Figure 6 – Scheme of DP-GAN architecture. Differential privacy is added during the discriminator’s update by a noisy gradient descent, using DP-SGD
method. Thanks to the post-processing properties, generator privacy is ensured too.

6.1.1.4 Preliminary results: application on MNIST

MNIST is a labeled dataset containing grayscale images of handwritten digits, from 0 to 9. It then contains
10 classes, which are well balanced, and can be easily applied to classification tasks. Its images are of low
dimension and so resolution, with shapes 28× 28× 1. It was one of the earlier wide dataset and is still popular
for benchmarks. The training and test sets are respectively composed of 60 000 and 10 000 images. We do not
apply data augmentation or pre-processing, except standardizing the images, so that the pixels have values in
[−1, 1]. We use a tanh last activation in the generator to respect this range of value.

We obtain images as shown in Figure 7. We consider 6 different privacy budgets. Stronger privacy budget
means less privacy. In Figure 7, we provide some examples of images generated by generator respecting the
privacy budget given. These examples illustrate the trade-off between privacy level and image quality.

Tensorflow has been used to implement the first results. The results are still experimental.

6.1.2 Status and future work

In Table 11, we provide the status of work on the different variants of GAN with differential privacy. This part of
the task 2.3 will focus on the impact of the addition of differential privacy in the generator and future work will
depend of the data and the potential existing generators that the use case provider can provide.

We will first use classical GAN architecture on open data avaible about xray, and compare the quality of data
generated when introducing DP with metrics like Frechet Inception Distance [53] and its variants and Inception
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Figure 7 – Overview of the generated images obtained with our DP-GAN models on MNIST with their corresponding DP
guarantees.

Main techniques explored DP-GAN, DP-WGAN and DP-cGAN
Existing or new method Existing methods
Relation with use case • Collaboration under the task with Use Case 3;

• Potential initial data type chest xrays data gener-
ation;
• Initiate experiment on chest Open Xray that are

avaible (see D4.1);
• Potential improvement of security of other gener-
ators by the different partners of T2.3;

Progress status Preliminary results
Table 11 – Differential Privacy for GAN status.

Score [54] and its variants. Moreover, when it is applicable and its exists some labeled images, we can evaluate
the images generated utility by evaluating a classifier trained in three differents settings and comparing the loss
of performance of the classifier:

• Setting A: Train on real data, Tested on real data;

• Setting B: Train on fake data, Tested on fake data;

• Setting A: Train on fake data, Tested on real data.

Moreover, evaluate the good privacy budgets is a tricky part. We propose to do it by using empricial inspection:

• Nearest Neighbors: We want our generator to be able to generate realistic images, which are new
samples and not just copies of the training data. As an experiment to detect over-fitting, we can generate
some samples, and look for its nearest neighbors in the real data used for the generator’s training. We
expect to find similar images but to see the ability of the generator to create new content;

• Interpolations in the latent space: try to understand the content learned by the generator via the space
continuity of the generated images. An unwanted behaviour would be a generator memorizing a distinct

37



D2.1 - Interim report on data (de-)anonymization and synthetic data generation

number of generated images, without any consistency in the latent space.

In both case, we study the impact of the introduction of DP. It is important to denote that the focus of this task
is to introduce DP in data generators. As no efficient non private data generator is yet available, potentially the
data generated will be of low quality.

We will follow the work plan below:

1. Select and collect Open Xray data with three potential sources:

• ChestX-ray148: medical imaging dataset which comprises 112,120 frontal-view X-ray images of
30,805 (collected from the year of 1992 to 2015) unique patients with the text-mined fourteen common
disease labels, mined from the text radiological reports via NLP techniques;

• NODE219: consists of frontal chest radiographs with annotated bounding boxes around nodules. It
consists of 4882 frontal chest radiographs where 1134 CXR images (1476 nodules) are annotated
with bounding boxes around nodules and the remaining 3748 images are free of nodules hence
represent the negative class;

• CheXpert10: a large dataset of chest X-rays and competition for automated chest x-ray interpretation,
which features uncertainty labels and radiologist-labeled reference standard evaluation sets.

2. Implementation of quality metrics and differential private generators;

3. Train, test and compare non private and private data generators;

4. Ease the potential reusability of the code;

5. Access to data and potentially existing generators (mandatory inputs from the use case provider);

6. Train, test and compare non private and private data generators on use case 3 provider data (if available);

7. (optional) Explore more complex GAN based architecture.

In this work plan, we focus on chest xray data generation. Morever, according the interest of the others partners
to secure their generator, we would collaborate to improve privacy of their generators.

6.2 Cancer tissue generation

The ultimate goal is to process a given collection of histological images in order to generate new patterns that
are not only pathologically accurate but also of high-quality. These generated images aim to be meticulously
observed for relevant details and lesions by medical professionals and students. The objective is to offer readily
available synthetic images for education and data augmentation purposes.

To this end, we developed a diffusion model for synthesizing histopathologic scans. In this initial stage, our
primary focus is on accurate data generation without strict privacy guarantees. As the project progresses,
we intend to enhance the accuracy of our technique through evaluation by medical experts (pathologists) and
implement more formal privacy guarantees described in Section 6.1.

6.2.1 Background: Diffusion models

Diffusion models are similar to variational autoencoders [12]. First, the data set is unified, i.e. the images are
transformed to have the same dimensions. The diffusion process then consists of two phases, called forward
and reverse diffusion. In the training process, these two phases are performed on the input, and then a random
noise with a standard normal distribution is given to the model from which it generates an image.

8https://paperswithcode.com/dataset/chestx-ray14
9https://node21.grand-challenge.org/Data/

10https://stanfordmlgroup.github.io/competitions/chexpert/
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6.2.1.1 Forward diffusion

In the training dataset, noise is progressively added to the images until we achieve an image with a standard
normal distribution. At this stage, a critical task is determining the optimal number and size of the iteration steps,
as these factors significantly impact the model’s outcomes. Choosing a higher number of steps comes with the
trade-off of longer learning times and increased computational demands. Specifying the number of steps, or
the amount of noise added in each step, is not straightforward. A kind of scheduling is employed where we don’t
follow a linear progression, which adds the same amount of noise at each step, but rather utilize more complex
functions to shape this value. Fortunately, the distribution of our final noisy image can be computed from the
initial image in a closed form. Therefore, operation does not introduce substantial computational complexity.

6.2.1.2 Reverse diffusion

The goal is to recover the original image from the noise generated through forward diffusion. This process is
far from straightforward, so specific U-Nets are employed, which are specialized neural networks. A U-Net [55]
is a type of neural network that, when given an image as input, first reduces its dimensions in multiple steps
while increasing the channel number11 It then passes the image through the middle block and finally brings it
back to the original dimensions and channel number through upsampling. Our U-Net architecture is shown in
Figure 8.

To tackle the challenge of recovering the original image from the noise, the noisy image produced by the forward
diffusion undergoes multiple iterations through this U-Net. This iterative process gradually removes the noise,
resulting in the complete generated image. The neural network predicts the expected value of the normal noise,
which is then subtracted from the image with a fixed variance. The resulting image is fed into the next iteration.

6.2.2 Dataset

We used the publicly available PatchCamelyon Dataset [7] which consists of 327.680 color images (96 x 96px)
extracted from histopathologic scans of lymph node sections in the Camelyon16 Dataset [56].

6.2.3 Diffusion model to synthesize histopathologic scans

The model incorporates a more complex U-Net structure based on [55] and illustrated in Figure 8, to predict
the expected noise value during reverse diffusion. Both the Downsample and Upsample phases involve vari-
ous layers such as Conv2d, ConvTranspose2d, Batchnorm2d, and Groupnorm2d, along with Swish activation
functions. A Linear layer manages the sinusoidal embedding.

Additionally, in our advanced model, we have the option to include an Attention layer in each of these blocks.
This layer is borrowed from the Transformer architecture [57].

6.2.3.1 Architecture

The U-Net architecture contains 4 downsampling and 4 upsampling Residual Blocks which all are composed
of:

• A Convolutional layer which is responsible for upscaling/downscaling the channel numbers,

• A Time Embedding layer responsible for embedding the time information for the U-Net to know which
iteration the loss is calculated for,

11Images are often organized into channels, where each channel represents a particular aspect of the image. For example, in a color
image, the three primary channels are often red, green, and blue (RGB), where each channel carries information about the intensity of that
color at each pixel. In grayscale images, there is typically only one channel representing the intensity of light.
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Figure 8 – Structure of our U-Net

• Another Convolutional layer,

• An optional Attention layer,

• A final layer for downsampling/upsampling the resolution of the images to the required form.

The channel numbers are scaled from 3 to 64, 128, 256 and 1024 in the Downsampling phase (and from
1024 to 256, 128, 64 and finally 3 in the Upsampling phase). The image resolutions are scaled from 96x96 to
48x48, 24x24, 12x12 and 6x6 in the Downsampling phase (and from 6x6 to 12x12, 24x24, 48x48 and finally
96x96 in the Upsampling phase. The optional Attention layers were only used in the 3rd and 4th blocks of the
Downsampling phase and in the corresponding blocks (1st and 2nd) in the Upsampling phase.

6.2.3.2 Parameters

The number of steps T , i.e. the number of iteration steps in forward and reverse diffusion in which the image is
decomposed into noise and back, is set to 1000. The input dimension of the images on which the model learns
is 96x96. The batch size is chosen depending on the size of the dataset and the available video memory.

6.2.3.3 Testing

Though expert validation is essential to assess the fidelity of the generated images for pathological usage,
the visual inspection by a layperson already reveals a high degree of similarity between the model-generated
images and real images, as illustrated in Figure 9.

Moreover, we plan to calculate the FID score [58], a metric commonly used in generative models working with
images, between a test dataset and a set of images generated by the model. The current FID value of 81.16
is not conclusive at this stage. It’s crucial to note that the dataset preprocessing is currently in a rudimentary
form, leading to many images in both the training and generated datasets that do not adequately represent
histological patterns.
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Figure 9 – Real samples in the top row and the synthetic samples generated by our model in the bottom row.

6.2.4 Next steps

Although the results with diffusion models are promising, there are still several unresolved issues. First, gener-
ating complete histopathologic scans appears to be very costly in terms of computation time, if not impractical.
The current solution involves generating patches of the whole scan; however, pathologists typically work with
complete, high-resolution scans. Second, the fidelity and practical usefulness of the generated samples remain
unclear without expert evaluation. Lastly, generating a large number of patches of the whole scan (and not even
complete scans) is still very costly and may be impractical with the commodity hardware that an average medical
university tends to have.

In the upcoming months, our efforts will focus on evaluating vision transformers (ViT) to generate complete
scans. The idea behind ViT models is that they generate larger images from smaller patches. We believe this
approach should be more scalable and capable of generating images with better quality if the patches also
exhibit high fidelity.

6.3 Fetal heartbeat time series generation

Cardiotocography (CTG) is a technique used to record the fetal heartbeat and uterine contractions during preg-
nancy. The device employed in CTG is known as a cardiotocograph. It involves placing two transducers onto
the abdomen of a pregnant woman. One transducer records the fetal heart rate using ultrasound, while the
other monitors uterine contractions by measuring the tension of the maternal abdominal wall, providing an in-
direct indication of intrauterine pressure. These transducers record two time series in parallel: one for fetal
heartbeat and the other for uterine contractions over time. The recorded time series are then utilized to deter-
mine whether the pregnancy is categorized as high or low risk. This distinction is crucial, as it adds context to
the CTG reading. For instance, if the pregnancy is classified as high-risk, the threshold for intervention may be
lower.

Educational organizations often lack a sufficient amount of data to train medical personnel. Our goal is to
perform data augmentation by generating synthetic time series of fetal heart rate and uterine contractions. As
a first step, we are investigating autoregressive methods to generate the next value of the time series given the
previous k measurements. The predicted value is then added to the generated time series, and this process is
repeated until a sufficient number of consecutive measurements are generated to form a complete time series.
Due to the complexity of the heart rate signal and the inherent noise in the measurement process, we have
opted for a transformer-based model to iteratively predict each consecutive measurement of a synthetic time
series. In general, any sequential models are applicable, but transformers have shown a great progress recently
in the domain if Natural Language Processing which is also a type of sequential data.
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6.3.1 An autoregressive approach based on discretization

An approach is investigated where all time series undergo initial discretization (quantization), followed by train-
ing a generative sequential model on these discretized data to produce discrete time-series. The generated
sequences are then converted back to the continuous domain. The process begins by dividing all time-series
into non-overlapping fixed-size subsequences. All possible subsequences are subsequently clustered into K

clusters, with each cluster member represented by a single token. The subsequences are then mapped to their
respective tokens, creating a token sequence or the discretized time-series. The generative model is trained
on these tokenized time-series, and the trained model can generate tokenized time-series. These generated
sequences are transformed back to the continuous domain by replacing each generated token with its corre-
sponding clusterhead.

The underlying rationale is that discretization helps mitigate the exploding and vanishing gradients problem
arising from extremely small and large values in the dataset. A smaller pool of possible values may also aid the
model in generalizing better. The process introduces two sources of error: (1) the representation (or tokeniza-
tion) error, resulting from mapping a token to the corresponding clusterhead, which imperfectly approximates
the original subsequence, and (2) the prediction error of the generative model due to incorrectly predicting the
next token. The total error is the sum of these two errors:

Etotal = Etoken + Emodel (1)

The tokenization error Etoken increases when the alphabet size K decreases, while Emodel decreases since
the model may generalize better with a smaller pool of possible values. For instance, if a single cluster/token
represents every possible subsequence (K = 1), the tokenization error is maximal, but the model’s prediction
accuracy is perfect (Emodel = 0). Conversely, if there is a unique discrete value for every possible value in the
dataset (i.e., K equals the number of unique subsequences), Etoken is 0, while Emodel is maximal, equivalent
to a model without tokenization. The goal is to find the optimal trade-off between the tokenization error and the
model’s prediction error.

The tokenization should be optimized to enhance the model’s performance while minimizing the representation
error. To formalize this problem, the following equation needs to be addressed:

C∗ = argmin
C

(
EMC

token + β · EMC
model

)
Here, C represents the tokenization function that maps a subsequence to a token, MC denotes the model
that takes the tokens produced by C as input, and β is a trade-off parameter. The objective is to find the
optimal mapping C∗ that minimizes the weighted sum of the tokenization error EMC

token and the model prediction
error EMC

model. While C∗ could be determined by training a model and iteratively adjusting the tokenization, this
approach may become prohibitively expensive depending on the model’s complexity.

6.3.2 Next steps

Our preliminary results are not promising. Our current models are unable to generate synthetic data with high
fidelity. One artifact of our current approach is that it starts to generate a constant signal after a few initial steps.
Hence, our next step is to incorporate aggregated information about the entire time series when predicting the
next value. One option is to first generate a coarser-grained representation of the entire time series and then use
an autoregressive method to generate finer-level details. In the next few months, we will be investigating various
standard time series representations, such as Fourier and wavelet transformations, that can capture high-level
information like trends and periodicity more effectively. Subsequently, we plan to combine this synthetic data
with a finer-grained representation using autoregressive or directed diffusion models
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6.4 Generation parameterization: Conditioning mammography generation

Generation of mammographies is an already present in the State-of-the-art. For example, MediGAN [39] is
able to generate mammographies in two projections as the ones seen in Figure 10: craniocaudal view (CC
view) and mediolateral oblique view (MLO view). However, the images are generated completely at random.
Therefore, to obtain an image with the desired characteristics the user would need to execute several times this
generation process until the desired image would be generated. As we have seen, there is a gap to cover on
the paremetrization/conditioning of the generation. This is specially interesting for Use Case 3, Synthetic data
generation for education, as the lecturer might require the images to have a particular set of characteristics.

Figure 10 – Two different mammographies generated with MediGAN. Left image is an mediolateral oblique (MLO) view and the right image is a Craniocaudal
(CC) view. Generated with the models trained with CSAW [4]

Given that, the problem to address would be defined by the following question: Is it possible to create a good
enough model that generates high quality mammographies and that provides input parameters to modify the
characteristics of the generated image?

6.4.1 Approach

Towards this end, we are exploring Conditional Generative Adversarial Networks (CGAN)[59], which takes as
input the random noise for the generation, as a regular GAN does, plus attributes that condition this generation.
In this way, both the image and tabular information are used as input of the models. By doing so the latent
space of the generated images improves its separability with the provided information, as shown in Figure 11.

Figure 11 – Effect of conditioning the model on other information over a given mammography class, e.g. BI-RADS for scoring the mammographies to
classify the status of the breast. When including it as part of the generation, the separation between classes is forced and, therefore, the generation of a
given class is possible.

Currently, we have explored the generation capabilities of MediGAN and also explored which metrics are rele-
vant for the problem. Moreover, we have obtained part of the datasets obtained in Section 3 and studied their
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properties. Figure 10 depicts two mammograms generated with this framework. In particular, we have found
that metrics are usually divided in three different categories: performance metrics, security metrics and utility
metrics. This idea is also shown in the work performed in the deliverable D4.1.

6.4.2 Next steps

Currently, our progress in this task is in a preliminary stage. Following the research performed our plan is
summarised in the following steps:

• Define a subset of metrics appropriate for the problem. The subset will include privacy and accuracy
metrics.

• Explore the potential of CGANs along with other similar neural network architectures to condition the
generation

• Develop a model from the explored architectures with open data as an initial baseline

• Collaborate with Use Case 3 to define which are the relevant characteristics to use in the conditioning,
e.g. age or BI-RADS score.

6.5 Missing MRI scan slice generation

The objective is the reconstruction of a missing slice within an MRI scan sequence. Breast and brain are the
two candidates for this application. It is a challenging task for both cases, considering the expected accuracy
and precision of the generated image. Thus, state-of-the-art approaches will be employed in an attempt to
achieve the goal. Diffusion models will constitute the basis of the final mechanism, while other techniques, like
tensor-based learning and GANs (Generative Adversarial Networks), could assist towards the common goal.

6.5.1 The Datasets

At least for the initial steps, open datasets will be preferably utilized in an aim to speed up the process of
development. For the breast case, Duke-Breast-Cancer-MRI dataset [60] seems to be suitable, containing lot
of MRI scans with plenty of additional information along with them. Accordingly, the BRATS 2018 dataset [61]
serves as an optimal starting point for applying the developed algorithms. Of course, throughout the project,
datasets from the collaborating partners will be utilized when they are available. A proper combination of the
open datasets and the provided ones could, potentially, provide a more robust solution. The latter will come
from the corresponding use cases of the project. Though, since the collection and the curation of data is an
ongoing process, limitation could occur that are related to the availability or the usability of data. Aiming to tackle
these issues, open datasets will be utilized at first place, in order to develop the Machine Learning models and
prepare the corresponding pipelines.

6.5.2 The approach

During the forward pass of the proposed diffusion model, different noisy versions of the input MRI slice are
generated at specified time steps. Following the backward pass, those generated, noisy images, along with
the corresponding step, are given as input to a UNet that provides the estimated noise as output. Through the
training process, the UNet takes into account, not only the noisy image (MRI slice) and the time step, but also
information that comes from the original adjacent MRI slices. Reasonable loss function seems to be the Mean
Squared Error (MSE) between the chosen noise and the predicted one. Except from the metrics that reveal the
similarity of the generated slice to the original one, the result will be examined by proper medical experts as
well, in order to determine the effectiveness of the proposed pipeline.
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6.5.3 Next steps

Currently, our progress is at preliminary stage; a) we are researching similar challenges in the academic fields
and, at the same time, b) we are exploring the available software libraries the are related to image generation
and reconstruction. Our workplan could be summarized in the following steps.

• Explore similar challenges and related state-of-the-art of the art solutions,

• Design an end-to-end pipeline, meaning the data pre-processing stage, the training procedure the infer-
ence mechanism and the extraction of evaluations metrics,

• Use few data (probably open data) for ensuring the proper functionality of the developed pipeline,

• Prepare sets of MRI scans for creating training, evaluation and testing procedures,

• Train the model and evaluate its performance,

• Make proper adjustments and try alternative schemes (like pretrained models, transfer learning, etc.) if
needed,

• Evaluate the performance and enrich the model knowledge, when data from the related use cases is
available,

• Build a common pre-processing stage for all the available data, and

• Deliver the integrated pipeline as a standalone service.
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7 Private data anonymization library

The SECURED project implements the novel techniques for dataset anonymization and privacy-preserving
synthetic data generation through different tools and services in the SECURED Federation Infrastructure. An
overview of the complete infrastructure is depicted in Figure 12. The focus of WP2, and the progress so far
as reported in this deliverable, is on the development of the internal libraries that implement the necessary
algorithms. Collectively, we refer to these implementations as the library12. The development of the high-level
user-facing interfaces through which users interact, such as the SECURED Innohub, are not discussed in this
deliverable. These efforts are covered in WP4. However, care must be taken that the design choices reported
in this deliverable do not contradict the requirements of the Innohub.

This section is organized as follows. Subsection 7.1 discusses the components in the SECURED architecture
that are relevant for this deliverable, listing the primary goals and expected input and output. Then, Subsec-
tion 7.2 reports on the guidelines we have established for the software development of the components. Finally,
Subsection 7.3 argues that our development choices enable the scaling-up approach that needs to be applied
on all components and describes how this can be performed in a general way.

7.1 Relevant components in the SECURED architecture

In this subsection, we go more in-depth on the specific components in the SECURED Federation Infrastructure,
as depicted in Figure 12, that relate to dataset anonymization and privacy-preserving synthetic data generation.
For each component, we list its primary goal, with which other SECURED components it interacts, and the
expected formats of the input and output data.

7.1.1 Data Anonymization Toolset (DANS)

As discussed in Section 4, the Data Anonymization Toolset (DANS) has as its primary goal the implementa-
tion of algorithms to transform datasets to mitigate the risk of re-identification as much as possible. DANS is
part of the Innohub, which means that the tool can be downloaded separately by the users and executed on
premise. It is also part of the Data Transformation Engine, which is offered as a SECURED cloud-service
to assess anonymity of datasets and automatically anonymize them, if deemed necessary. It also contains
the Anonymizing Service, which implements the main anonymization algorithms. The user, so the medical
practitioner, will also interact with the Anonymization Decision Support, which decides on the algorithm(s) to
be used for a given dataset.

Input: The following use-cases will submit input datasets to DANS. The actual definition of the health data
types listed below is outlined in Section 3.

• UC-2, telemonitoring for children, consists of datasets involving medical time series data, such as ECG,
heart rate, oxygen saturation and respiratory state. For this use-case, the datasets are only going to be
processed by DANS if re-identification was assessed to be too easy.

• UC-3, synthetic data generation for education, needs to have input datasets to be anonymized before
being used for synthetic data generation. There are three main categories of data: Imaging (e.g. mam-
mography images and MRI scans), time series (e.g. ECG) and Electronic Health Record (EHR) with text
and tabular data.

• UC-4, genomic data, might want to anonymize the results of the genomic analysis so they can be shared
with the scientific community in a privacy-preserving manner.

12The same applies to the library developed by WP3, which is discussed in parallel in Deliverable D3.1. We have not chosen for different
names, because the actual development is done separately for each component in the SECURED architecture, rather than each WP
creating a grand overarching library.
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Output: The output of DANS consists of the anonymized datasets and the algorithms and other relevant pa-
rameters used to perform the anonymization.

7.1.2 De-Anonymization/Re-Identification (DEAN)

As discussed in Section 5, the De-Anonymization/Re-Identification (DEAN) component is responsible for ana-
lyzing and performing novel re-identification attacks to assess whether previously applied anonymization tech-
niques succeeded. DEAN is part of the Data Transformation Engine, which is offered as a SECURED cloud-
service to assess anonymity of datasets and automatically anonymize them, if deemed necessary. It contains
the Anonymization Assessment Service, which actually performs the assessment.

Input: The following use-cases will submit input datasets to DEAN. The actual definition of the health data
types listed below are outlined in Section 3.

• UC-2, telemonitoring for children, needs to have the anonymization being assessed by DEAN.

• UC-3, synthetic data generation for education, needs to have both the input dataset for and the output of
the generation to be properly anonymized. As such, DEAN needs to perform the assessment on input
and output datasets.

• UC-4, genomic data, needs to have an anonymization assessment by DEAN on datasets to be released
to the scientific community.

Output: The output of DEAN consists of a report containing the scores for all metrics that are relevant for the
re-identification and that have been computed for the given dataset.

7.1.3 Synthetic Data Generation (SDG)

As discussed in Section 6, the Synthetic Data Generation (SDG) has as its main purpose to generate synthetic
data with similar information-statistical contribution and extending existing datasets with high-fidelity data of
wide diversity. SDG is part of the Innohub, which means that the tool can be downloaded separately by the
users and executed on premise. It is part of the Synthetic Data Generator and contains the Synthesis Engine.

Input: The following use-cases will submit input datasets to SDG. The actual definition of the health data types
listed below are outlined in Section 3.

• UC-2, telemonitoring for children, might need to increase the size of their datasets by making SDG gen-
erating synthetic data.

• UC-3, synthetic data generation for education, already has SDG in its name.

Output: The output of SDG consists of the generated dataset in the same format as the input dataset, but then
with synthetic data.

7.2 Software development

The source code of the implementations of the three aforementioned components are managed with the Git
Version Control System (VCS)13. Each component is assigned a Git repository of which the hosting is managed
by the UvA. All repositories are made accessible to all partners in the SECURED project and only verified project
members can commit code and approve merge requests.

13https://git-scm.com/
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Figure 12 – Preliminary overview of the SECURED architecture, as presented in Deliverable D4.1.

This subsection describes how the software development of the components is managed in the Git repositories.
To be able to properly manage a project of the scale of SECURED, it is paramount that unifying guidelines are
set and followed for the implementations of the components. The following will delve into more detail about the
programming language, documentation and testing.

7.2.1 Programming language, namespace and style

The main programming language for each component is Python14. After JavaScript, which is more focused
on web applications, Python is the most popular high-level general-purpose programming language in 2023
on GitHub. As such, Python would be an ideal match for the developers in the SECURED project. It will also
allow users of the SECURED Federated Infrastructure to easily understand the codebase and to easily adopt
the SECURED Toolbox in their own software ecosystem. In case the requirements need parts of a component
to be written in a different language, then this will be properly justified and documented.

All components fall under the secured Python package that represents the internal libraries of the SECURED
project. Each component is assigned a unique name in this namespace. That is, the Data Anonymization
Toolset is developed as the secured.dans package, De-Anonymization/Re-Identification as secured.dean, and
Synthetic Data Generation as secured.sdg. Any helper functions that are developed independent of the com-
ponents, such as functionality to parse datasets, fall under secured.common.

To streamline the development of the library based on the same environment and packages, a Python distri-
bution such as Anaconda.Distribution15 will be used. Anaconda is a distribution of the Python programming
language, managing both package management and deployment to production. Most interestingly, Anaconda
also allows non-Python dependencies to be included in the environment. This makes Anaconda a very versatile
dependency manager and suitable for cases where components require system libraries for hardware support.

As potential users of the SECURED platform are medical practitioners who are not necessarily software devel-
opers themselves but do care about safeguarding their patients’ privacy, the code needs to be understandable
by itself. Besides selecting the right programming language, the code also needs to be written in a clear style.
For this, we make use of Ruff16. Ruff is a Python linter and code formatter. That is, it can both detect code style

14https://www.python.org/
15https://www.anaconda.com/
16https://docs.astral.sh/ruff/

48

https://www.python.org/
https://www.anaconda.com/
https://docs.astral.sh/ruff/


D2.1 - Interim report on data (de-)anonymization and synthetic data generation

violations and fix them. Several plugins exist to integrate Ruff in modern-day code editors. Ruff’s default rules
will be consistently applied on the source code of all components.

7.2.2 Dependencies

After selecting the right algorithms for dataset anonymization and privacy-preserving synthetic data generation,
these algorithms need to be efficiently implemented. Preference is given for already-established implementa-
tions that are compatible with SECURED’s requirements. Even so, a wrapper or additional code changes might
still be necessary to make it compatible with SECURED. Only if a base implementation is missing, should it be
written completely from scratch.

All Anaconda-installable dependencies are listed in a requirements.txt in the root of the component’s Git
repository. This allows new adaptors of the SECURED library to easily initialize the Python environment in
which the component should immediately be ready for operation. If external dependencies are required that
cannot be installed by Anaconda, then this information needs to be documented in the README in the root of the
Git repository.

Care must be taken that external dependencies are only used if their inclusion is absolutely necessary and if
the developers are trusted. Using more dependencies increases the attack surface of the SECURED library.
As the SECURED toolbox and services are used to process medical data that may not have been anonymized
yet (because it still needs to be, for instance), this is vital to take into account. Preference should be given for
packages with a strong and professional codebase that are actively maintained by a large community.

7.2.3 Relevant external libraries

Several external Python libraries will included/linked, to provide crucial routines for carrying out the anonymiza-
tion, de-anonymization attacks and synthetic data generation over the discussed data types. The libraries play
an important role in the pipeline for handling and analysing data. In general, Scipy, Numpy, and Pandas libraries
offer the mathematical foundation for handling and preparing data for feature extraction and pattern analysis,
and will be used for several data types. Other, more specialised libraries will be used for specific data types
and formats, as described below.

ECG The WFDB library is pivotal for ECG data acquisition from repositories like PhysioNet and essential for
collecting and processing ECG datasets for analysis. Matplotlib and Seaborn are essential tools for data visu-
alisation, supporting initial analyses and interpreting model results.

EHR FHIR (Fast Healthcare Interoperability Resources) libraries are essential for dataset access and manip-
ulation for EHR data, key to de-anonymization like pattern association. PyEHR facilitates EHR management
and analysis, like medication-disease linkage and cluster analysis, which are essential for finding and isolating
recognisable patterns in anonymized datasets.

Genomics For this kind of data we envision using the Plink format 17 for Single Nucleotide Polymorphism
(SNP)s. For this kind of data, the package pandas-plink 18 offers all the functionallities to read this data and
create a Pandas dataframe from it, which allows standard techniques to be applied over it.

Images There are two main imaging standards that are of interest in SECURED: DICOM and NIfTI. In order
to read DICOM in python, Pydicom 19 comes handy as it provides functionalities to read both the image and
the associated metadata (DICOM header) and these pieces of data can be converted later to more standard
formats such as Numpy arrays. Alternatively, DICOM data can be read in matlab and exported to python
for further processing. Data in NIfTI (Neuroimaging Informatics Technology Initiative) format can be read in
matlab, and subsequently exported using matlab types (in .mat file format) for further processing by Python
code. Matlab data files can be read in Python by using a library, such as scipy, which allows importing matlab

17https://www.cog-genomics.org/plink/1.9/formats
18https://pypi.org/project/pandas-plink/
19https://pydicom.github.io/
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workspace variables and translating them into python variables. Such an approach is useful as it facilitates the
utilization of available matlab code and implements a simple matlab-to-python interface. Furthermore, direct
input and processing of NIfTI data is possible in python through the libraries nibabel 20 and nilearn 21.

7.2.4 Documentation

Each component needs to be documented in such a way that a prospective user of the SECURED platform,
a medical practitioner who does not necessarily have a strong background in software engineering, should be
able to understand the codebase from a high-level perspective. Especially for the SECURED toolbox, where
practitioners can download the tools to run them on promise, the documentation must be complete and clear.

In the Python codebase, each file must contain a header with SECURED’s copyright notice and the purpose of
the file. Each function and class, if applicable, must be annotated by comments to explain its functionality. Any
specific details about the input and output, such as any assumptions, must be documented in this way.

The documentation, i.e., the website and/or the PDF that contains all the information, is compiled by Sphinx22.
When comments in the code are formatted in the reStructredText (RST) markup language, Sphinx is able to
automatically create an overview of the Application Programming Interface (API). Additional pages can also be
added as separate RST files to the Git repository. This is more suitable for e.g., tutorials.

7.2.5 Tests

The component’s repository should contain a list of input datasets, component configuration and corresponding
outputs to verify that the implementation in the user’s environment is working as expected. Scripts to automate
the verification should be part of the codebase as well. The documentation should properly state which output
is expected and why. A measure of the quality of the tests, is the code coverage, i.e., which parts of the code
are covered by the tests. This number should be as high as possible. Any part of the code not covered by the
pre-supplied tests should be documented separately.

Ideally, external servers are setup that automatically perform these tests when changes to the codebase are
submitted in the form of merge requests. This way, it can easily be verified whether old functionality is not being
broken by the changes, or whether they introduce new performance regressions.

7.3 Scaling up the components

The first focus of the Python implementation of the three aforementioned components is on correct compu-
tation of the selected or crafted privacy-preserving algorithms. The selection of NumPy-native code should
already allow SIMD optimizations to kick in while still maintaining correctness. The next step is to scale up the
SECURED solution to be able to process more massive amounts of privacy-sensitive medical data. Although
in the future algorithmic optimizations may seem necessary, several generic optimization techniques can be
undertaken first. In this section, we discuss three techniques that are fully compatible with our Python-powered
SECURED ecosystem: Process-based parallelism in Section 7.3.1, distributed computing in Section 7.3.2, and
hardware accelerators in Section 7.3.3.

7.3.1 Process-based parallelism

Without depending on any additional hardware, Python has built-in support for the multiprocessing module23

for multi-threading and multi-tasking. This allows the components to be developed as independent sub-tasks
20https://nipy.org/nibabel
21https://nilearn.github.io/
22https://www.sphinx-doc.org/
23https://docs.python.org/3/library/multiprocessing.html
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that can be executed concurrently. The documentation also states that multiprocessing is not as much im-
pacted by the Python Global Interpreter Lock, which generally hampers multi-threading24.

7.3.2 Distributed computing

The distributed computing paradigm allows tasks that can be executed in a concurrent manner, to be executed
on different physical nodes, in case the threat model of the medical practitioner allows for this. This enables
the usage of microservices, such as depicted in Figure 2, with a package such as PyMS25.

7.3.3 Hardware accelerators

Performance-critical parts of the code can be offloaded to specialized hardware for higher efficiency:

• Python bindings can be made with C and C++, from which specialized instructions such as SIMD support
can be added, in case manual application is required.

• Through the same C and C++ bindings, accelerators can be connected that e.g., with High-Level Synthesis
(HLS) can be explored on FPGAs.

• GPU bindings through e.g., pycuda26

24https://peps.python.org/pep-0703/
25https://python-microservices.github.io/home/
26https://documen.tician.de/pycuda/
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8 Conclusions

This document summarises the current progress and next steps of Work Package 2 of the SECURED project.
In line with the project structure, the work has been performed in a data-centric way, meaning that first the
data types are located and then the related techniques are explored. This approach allowed us to identify
which kind of data types or modalities are relevant and which kind of datasets are available to work with.
Regarding the explored techniques, this deliverable presents progress on all the areas defined by the WP2 task:
Anonymization, de-anonymization/re-identification, synthetic data generation and their efficient implementation.

Regarding data anonymisation, we have analysed several anonymisation tools and open-source libraries for
creating the SECURED anonymisation toolset. In the first stage the DANS tool and Amnesia library are selected,
providing k-anonymity and Differential privacy among others privacy models and mechanisms for anonymisa-
tion. These tools will be able to anonymise the different types of data such as tabular data, time-series data,
image metadata and genomic data, relevant to the project. We have also provided the initial design of the
architecture of the DANS 2.0 (SECURED anonymisation toolset), which integrates the different tools and open-
source libraries to be deployed as microservices.

Complementary to the work on anonymization, the parallel strand of research investigating de-anonymization/re-
identification attacks has progressed with the identification of the the data types (and associated target datasets,
both within the project consortium and in public repositories) to be used. This has been followed by an anal-
ysis of the attack strategies to be pursued over the coming months, including membership attacks, inference
matching attacks, attribute inference attacks, and linkage attacks.

Regarding synthetic data generation we have explored the relevant tools to create a baseline of tools to produce
data. The current work was defined as three different axis: security, improvement and functionallity of the
methods. These three axis have shown to be relevant for the task and for the related use cases. Security
is shown to be important relevant as generated images can be very close to the original or convey patterns
that can be later linked with the original. We have seen that Differential Privacy GANs show potential in this
direction. On the other hand, to match with the use cases, generation of cancer tissue images and time series
was explored. In particular, cancer tissue images pose a challenging problem due to their size. Finally, even
though not as mature as the previous, two different functionallities are shown: Generation conditioning and
missing MRI scan generation. These two functions will provide the user to address specific tasks and direct the
generation given their requirements.

Finally, the private anonymization library key ideas, methodology and concepts were presented. This library
will ensure that all components are written in an accessible way in Python, integrating it easily in widely-used
data science tools in the medical sector. On the other hand, the setup will ensure to offer ways to scale up the
components through different techniques such as parallelism, distributed computing or hardware accelerators.
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